The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematic...The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.展开更多
As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of mater...As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of materials.However,the large and expensive vector network analyzers(VNA)with expensive analysis software applied in measuring dielectric properties make research limited to the laboratory.To acquire dielectric spectra in situ,a model for solving relative complex permittivity was derived,and its performance was validated.Then,a low-cost portable dielectric spectrometer with a mini VNA,a Raspberry Pi,and a coaxial probe as core parts was developed over the frequency range of 100-3000 MHz.The stability and accuracy of the developed spectrometer were tested using milk and juice.The results indicated that the relative errors of the model were within±5%for dielectric constant(ε′)and loss factor(ε″).The coefficients of variation of measuredε′andε″by the developed spectrometer at 100-3000 MHz were less than 1%and 2%,respectively.Compared with the dielectric properties obtained by using a commercial dielectric measurement system,the relative errors of measuredε′andε″were within±3.4%and±6.0%,respectively.This study makes fast,non-destructive,and on-site food quality detection using dielectric spectra possible.展开更多
Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in ...Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in the traditional horizontal tin-plating process, disadvantages such as the pinhole defects and low productivity effect cannot be avoided. In this paper, a vertical tin-plating process was proposed to reduce the pinhole defects and improve the tincoating quality. Compared with the traditional horizontal tin-plating process, the immersion length was reduced from 300-400 mm to 10-100 mm and the tin-plating time was reduced from 7 s to 3 s in the proposed method. The experimental results indicate that immersion length and time are key parameters for the tin-plating quality. With this new tin-plating process, the experimental results show that the pinhole defects can be eliminated effectively by controlling the immersion depth below 100 mm and tin-plating time at 3 s. The thickness of tin-coating increased from not more than 5 μm to 12.3 μm with the proposed vertical tin-plating process. Meanwhile, the thickness of the intermetallic compounds (IMCs) layer between the tin-coating and copper wires was reduced from 3.26 μm to 0.62 μm if the immersion time decreased from 30 s to 1 s. Besides, a self-developed flux, which possesses a boiling point or decomposed temperature of active components over 300℃, exhibits a better efficiency in reducing the pinhole formation.展开更多
<div style="text-align:justify;"> Transceiver module and two-dimensional sum difference network are important components of phased array antenna. In this paper, multilayer printed board is used to inte...<div style="text-align:justify;"> Transceiver module and two-dimensional sum difference network are important components of phased array antenna. In this paper, multilayer printed board is used to integrate millimeter wave multi-channel transceiver circuit and sum difference network. The interconnection between them is realized through RF coaxial vertical transition. At the same time, the heat dissipation design and inter channel shielding design of the module are carried out. The RF and low frequency required by the module are completed through the wiring between and within the dielectric plate layers. Finally, 128 arrays are fabricated and verified by multi-channel passive test. The results show that the type transceiver module integrating with two-dimensional sum difference network has good performance, and 128 channels have excellent amplitude and phase characteristics. The integration technology has the characteristics of lightweight, miniaturization, high integration and low manufacturing cost. It can be widely used in miniaturized phased array antennas. </div>展开更多
Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust ada...Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests.展开更多
基金Supported by the National Natural Science Foundation of China(No.11372309,61304017)Science and Technology Development Plan Key Project of Jilin Province(No.20150204074GX)the Science and Technology Special Fund Project of Provincial Academy Cooperation(No.2017SYHZ00024)
文摘The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.
基金financial support provided by the National Natural Science Foundation of China(Grant No.32172308)Startup Foundation for Doctors of Yan'an University(No.YDBK2022-79).
文摘As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of materials.However,the large and expensive vector network analyzers(VNA)with expensive analysis software applied in measuring dielectric properties make research limited to the laboratory.To acquire dielectric spectra in situ,a model for solving relative complex permittivity was derived,and its performance was validated.Then,a low-cost portable dielectric spectrometer with a mini VNA,a Raspberry Pi,and a coaxial probe as core parts was developed over the frequency range of 100-3000 MHz.The stability and accuracy of the developed spectrometer were tested using milk and juice.The results indicated that the relative errors of the model were within±5%for dielectric constant(ε′)and loss factor(ε″).The coefficients of variation of measuredε′andε″by the developed spectrometer at 100-3000 MHz were less than 1%and 2%,respectively.Compared with the dielectric properties obtained by using a commercial dielectric measurement system,the relative errors of measuredε′andε″were within±3.4%and±6.0%,respectively.This study makes fast,non-destructive,and on-site food quality detection using dielectric spectra possible.
基金Supported by Science and Technology Support Project of Tianjin Science and Technology Commission (No.10ZCKFGX3500)
文摘Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in the traditional horizontal tin-plating process, disadvantages such as the pinhole defects and low productivity effect cannot be avoided. In this paper, a vertical tin-plating process was proposed to reduce the pinhole defects and improve the tincoating quality. Compared with the traditional horizontal tin-plating process, the immersion length was reduced from 300-400 mm to 10-100 mm and the tin-plating time was reduced from 7 s to 3 s in the proposed method. The experimental results indicate that immersion length and time are key parameters for the tin-plating quality. With this new tin-plating process, the experimental results show that the pinhole defects can be eliminated effectively by controlling the immersion depth below 100 mm and tin-plating time at 3 s. The thickness of tin-coating increased from not more than 5 μm to 12.3 μm with the proposed vertical tin-plating process. Meanwhile, the thickness of the intermetallic compounds (IMCs) layer between the tin-coating and copper wires was reduced from 3.26 μm to 0.62 μm if the immersion time decreased from 30 s to 1 s. Besides, a self-developed flux, which possesses a boiling point or decomposed temperature of active components over 300℃, exhibits a better efficiency in reducing the pinhole formation.
文摘<div style="text-align:justify;"> Transceiver module and two-dimensional sum difference network are important components of phased array antenna. In this paper, multilayer printed board is used to integrate millimeter wave multi-channel transceiver circuit and sum difference network. The interconnection between them is realized through RF coaxial vertical transition. At the same time, the heat dissipation design and inter channel shielding design of the module are carried out. The RF and low frequency required by the module are completed through the wiring between and within the dielectric plate layers. Finally, 128 arrays are fabricated and verified by multi-channel passive test. The results show that the type transceiver module integrating with two-dimensional sum difference network has good performance, and 128 channels have excellent amplitude and phase characteristics. The integration technology has the characteristics of lightweight, miniaturization, high integration and low manufacturing cost. It can be widely used in miniaturized phased array antennas. </div>
基金Supported by the National Natural Science Foundation of China(No.11372309,61304017)Youth Innovation Promotion Association(No.2014192)+1 种基金the Provincial Special Funds Project of Science and Technology Cooperation(No.2017SYHZ0024)the Key Technology Development Project of Jilin Province(No.20150204074GX)
文摘Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests.