In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shieldi...In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.展开更多
Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The ...Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.展开更多
The C-band three-cavity transit-time effect oscillator (3C TTTO) is a novel high power microwave device based on the transit-time effect of the three-cavity (3C) resonator. The operational principle of this device is ...The C-band three-cavity transit-time effect oscillator (3C TTTO) is a novel high power microwave device based on the transit-time effect of the three-cavity (3C) resonator. The operational principle of this device is briefly expounded in this paper, and the theoretical and experimental researches on the radial insulation diode, the 3C resonator, the double-gap output cavity and the circular waveguide bevel cut radiation antenna are presented in detail. By using the analytic method, the eigen modes and their field distributions of the 3C resonator are developed, and some basic laws of the transit-time effect are obtained in non-π mode field of the 3C resonator. At last, the experimental results are given. This device generated RF peak power in excess of 400MW with 15ns FWHM, and its beam-wave power conversion efficiency is about 17%.展开更多
Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a sta...Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a state of non-coaxial rotation. Such a flow model has a great significance not only due to its own theoretical interest, but also due to applications to geophysics and engineering. The resulting initial value problem has been solved analytically by applying the Laplace transform technique and the explicit expressions for the velocity for steady and unsteady cases have been established. The analysis of the obtained results shows that the flow field is appreciably influenced by the applied magnetic field, the frequency and rotation parameters.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61701516)
文摘In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.
基金supported by the National Natural Science Funds Fund of China under Grant No.11505288Provincial Natural Science Foundation of Hunanscientific effort project of NUDT.
文摘Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.
文摘The C-band three-cavity transit-time effect oscillator (3C TTTO) is a novel high power microwave device based on the transit-time effect of the three-cavity (3C) resonator. The operational principle of this device is briefly expounded in this paper, and the theoretical and experimental researches on the radial insulation diode, the 3C resonator, the double-gap output cavity and the circular waveguide bevel cut radiation antenna are presented in detail. By using the analytic method, the eigen modes and their field distributions of the 3C resonator are developed, and some basic laws of the transit-time effect are obtained in non-π mode field of the 3C resonator. At last, the experimental results are given. This device generated RF peak power in excess of 400MW with 15ns FWHM, and its beam-wave power conversion efficiency is about 17%.
文摘Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a state of non-coaxial rotation. Such a flow model has a great significance not only due to its own theoretical interest, but also due to applications to geophysics and engineering. The resulting initial value problem has been solved analytically by applying the Laplace transform technique and the explicit expressions for the velocity for steady and unsteady cases have been established. The analysis of the obtained results shows that the flow field is appreciably influenced by the applied magnetic field, the frequency and rotation parameters.