The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined st...The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined steps in air. Mass loss of the thermal decomposition of CoC2O4·2H2O was in good agreement with the theoretica1 one. XRD showed that the final product of the thermal decomposition was Co3O4. The activation energies were calculated through the ASTM E698 and Flynn-Wall-Ozawa (FWO) methods, and the possible conversion functions had been estimated through the multiple-linear regression method. The activation energies for the two steps decomposition of CoC2O4·2H2O were 140.18 kJ·mol-1 and 134.61 kJ·mol-1, respective1y.展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditi...The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.展开更多
Fe3O4-CoO/Al2O3 catalyst was prepared by incipient wetness impregnation using Fe(NO3)3.9H2O and Co(NO3)2.6H2O as the precursors, and its catalytic performance was investigated in ozonation of 2-(2,4-dichlorophen...Fe3O4-CoO/Al2O3 catalyst was prepared by incipient wetness impregnation using Fe(NO3)3.9H2O and Co(NO3)2.6H2O as the precursors, and its catalytic performance was investigated in ozonation of 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP), nitrobenzene and oxalic acid. The experimental results indicated that Fe3O4-CoO/Al2O3 catalyst enabled an interesting improvement of ozonation efficiency during the degradation of each organic pollutant, and the Fe3O4-CoO/Al2O3 catalytic ozonation system followed a radical-type mechanism. The kinetics of ozonation alone and Fe3O4-CoO/Al2O3 catalytic ozonation of three organic pollutants in aqueous solution were discussed under the mere consideration of direct ozone reaction and OH radical reaction to well investigate its performance. In the catalytic ozonation of 2,4-DP, the apparent reaction rate constants (k) were determined to be 1.456 × 10^-2 min-1 for ozonation alone and 4.740 × 10^-2 min^-1 for O3/Fe3O4-CoO/Al2O3. And O3/Fe3O4-CoO/Al2O3 had a larger Rot (6.614 × 10^-9) calculated by the relative method than O3 did (1.800 x 10-9), showing O3/Fe3O4-CoO/Al2O3 generated more hydroxyl radical. Similar results were also obtained in the catalytic ozonation of nitrobenzene and oxalic acid. The above results demonstrated that the catalytic performance of Fe3O4-CoO/Al2O3 in ozonation of studied organic substance was universal to a certain degree.展开更多
Optical properties of cobalt ferrite(CoFe2O4) nanoparticles are modeled and simulated employing finite element analysis(FEA) and density functional theory(DFT) for different particle sizes. The simulated absorption ma...Optical properties of cobalt ferrite(CoFe2O4) nanoparticles are modeled and simulated employing finite element analysis(FEA) and density functional theory(DFT) for different particle sizes. The simulated absorption maxima of electronic excitations is red-shifted from 330 nm to 410 nm using finite element analysis and from 331.27 nm to 409.07 nm using quantum mechanical method, with increasing particle sizes from 40 nm to 50 nm. The measured absorption maxima matched the simulated results reasonably well and red-shifted to longer wavelengths from 315.59 nm to 426.73 nm with the increase in particle sizes from 30 nm to 50 nm. The DFT simulated, FEA simulated and experimentally derived optical band gap energies, Eg, were also acquired and compared. The simulated Egvalues decreased from 3.228 to 2.478 e V and from 3.266 to 2.456 e V, while the experimental Egvalue decreased from 3.473 to 2.697 e V, with increasing the particle sizes. The research demonstrated that the optical absorption of CoFe2O4 nanoparticles can be described with high accuracy using the quantum mechanical interpretation based on DFT. FEA based simulations have shown limitations for smaller(< 40 nm) nanoparticles likely due to the increased surface scattering that prevented a stable solution for simulations beyond the quasistatic limit. The DFT computational tool developed by this study can enable both the low cost computation and highly reliable prediction of optical absorption properties and optical band edges, and thus contribute to understanding and design of CoFe2O4 nanoparticle properties prior to fabrication and functionalization of them, for a wide range of applications especially for sensing and photonic wave modulations.展开更多
The cobalt ferrite nanoparticles were prepared by coprecipitation in the presence of poly (N-vinylpyrrolidone) (PVP) and characterized by XRD, TEM, EDX and magnetometry. XRD results suggest the formation of pure cobal...The cobalt ferrite nanoparticles were prepared by coprecipitation in the presence of poly (N-vinylpyrrolidone) (PVP) and characterized by XRD, TEM, EDX and magnetometry. XRD results suggest the formation of pure cobalt ferrite. The mean particle sizes of CoFe2O4 samples annealed at 400 ℃ and 600 ℃ were ca. 6 and 25 nm, respectively as obtained by transmission electron microscopy (TEM). The magnetic measurements indicated that nano-particles obtained at 400 ℃ were superparamagnetic while that prepared at 600 ℃ were ferrimagnetic.展开更多
文摘The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined steps in air. Mass loss of the thermal decomposition of CoC2O4·2H2O was in good agreement with the theoretica1 one. XRD showed that the final product of the thermal decomposition was Co3O4. The activation energies were calculated through the ASTM E698 and Flynn-Wall-Ozawa (FWO) methods, and the possible conversion functions had been estimated through the multiple-linear regression method. The activation energies for the two steps decomposition of CoC2O4·2H2O were 140.18 kJ·mol-1 and 134.61 kJ·mol-1, respective1y.
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
基金supported by National Natural Science Foundation of China (20977115, 21272281)Natural Science Foundation of Hubei Province (2014CFB919)the Science and Technology Plan Innovation Team of Wuhan City (2015070504020220)~~
文摘The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.
基金supported by the National Natural Science Foundation of China(No.50578146,20876151)the National Science Foundation of Zhejiang Province,China(No.Y5080178)
文摘Fe3O4-CoO/Al2O3 catalyst was prepared by incipient wetness impregnation using Fe(NO3)3.9H2O and Co(NO3)2.6H2O as the precursors, and its catalytic performance was investigated in ozonation of 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP), nitrobenzene and oxalic acid. The experimental results indicated that Fe3O4-CoO/Al2O3 catalyst enabled an interesting improvement of ozonation efficiency during the degradation of each organic pollutant, and the Fe3O4-CoO/Al2O3 catalytic ozonation system followed a radical-type mechanism. The kinetics of ozonation alone and Fe3O4-CoO/Al2O3 catalytic ozonation of three organic pollutants in aqueous solution were discussed under the mere consideration of direct ozone reaction and OH radical reaction to well investigate its performance. In the catalytic ozonation of 2,4-DP, the apparent reaction rate constants (k) were determined to be 1.456 × 10^-2 min-1 for ozonation alone and 4.740 × 10^-2 min^-1 for O3/Fe3O4-CoO/Al2O3. And O3/Fe3O4-CoO/Al2O3 had a larger Rot (6.614 × 10^-9) calculated by the relative method than O3 did (1.800 x 10-9), showing O3/Fe3O4-CoO/Al2O3 generated more hydroxyl radical. Similar results were also obtained in the catalytic ozonation of nitrobenzene and oxalic acid. The above results demonstrated that the catalytic performance of Fe3O4-CoO/Al2O3 in ozonation of studied organic substance was universal to a certain degree.
基金supported by the Office of Naval Research (ONR), United States of America (USA), under the grant number N00014-16-1-3096。
文摘Optical properties of cobalt ferrite(CoFe2O4) nanoparticles are modeled and simulated employing finite element analysis(FEA) and density functional theory(DFT) for different particle sizes. The simulated absorption maxima of electronic excitations is red-shifted from 330 nm to 410 nm using finite element analysis and from 331.27 nm to 409.07 nm using quantum mechanical method, with increasing particle sizes from 40 nm to 50 nm. The measured absorption maxima matched the simulated results reasonably well and red-shifted to longer wavelengths from 315.59 nm to 426.73 nm with the increase in particle sizes from 30 nm to 50 nm. The DFT simulated, FEA simulated and experimentally derived optical band gap energies, Eg, were also acquired and compared. The simulated Egvalues decreased from 3.228 to 2.478 e V and from 3.266 to 2.456 e V, while the experimental Egvalue decreased from 3.473 to 2.697 e V, with increasing the particle sizes. The research demonstrated that the optical absorption of CoFe2O4 nanoparticles can be described with high accuracy using the quantum mechanical interpretation based on DFT. FEA based simulations have shown limitations for smaller(< 40 nm) nanoparticles likely due to the increased surface scattering that prevented a stable solution for simulations beyond the quasistatic limit. The DFT computational tool developed by this study can enable both the low cost computation and highly reliable prediction of optical absorption properties and optical band edges, and thus contribute to understanding and design of CoFe2O4 nanoparticle properties prior to fabrication and functionalization of them, for a wide range of applications especially for sensing and photonic wave modulations.
文摘The cobalt ferrite nanoparticles were prepared by coprecipitation in the presence of poly (N-vinylpyrrolidone) (PVP) and characterized by XRD, TEM, EDX and magnetometry. XRD results suggest the formation of pure cobalt ferrite. The mean particle sizes of CoFe2O4 samples annealed at 400 ℃ and 600 ℃ were ca. 6 and 25 nm, respectively as obtained by transmission electron microscopy (TEM). The magnetic measurements indicated that nano-particles obtained at 400 ℃ were superparamagnetic while that prepared at 600 ℃ were ferrimagnetic.