期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Co_(3)O_(4)中钴空位的精确构筑来促进羟基氧化物的形成加速水氧化反应
1
作者 刘志娟 汪广进 +1 位作者 郭锦瑜 王燕勇 《Science China Materials》 SCIE EI CAS CSCD 2024年第3期780-787,共8页
缺陷位点的引入可以通过增加对反应中间体的亲和力来提高催化剂的催化能力.纳米材料中存在多种缺陷类型,如阳离子缺陷和阴离子缺陷.不同的缺陷位点对电催化性能的贡献不同.因此,构筑缺陷必须精准、明确,以便于确定最优的缺陷类型,促进... 缺陷位点的引入可以通过增加对反应中间体的亲和力来提高催化剂的催化能力.纳米材料中存在多种缺陷类型,如阳离子缺陷和阴离子缺陷.不同的缺陷位点对电催化性能的贡献不同.因此,构筑缺陷必须精准、明确,以便于确定最优的缺陷类型,促进电化学反应.在这项工作中,我们以钴空位为例,分别成功合成了二价钴空位(Co3O 4-VCo(II))和三价钴空位(Co_(3)O_(4)-VCo(III))的Co_(3)O_(4).电化学结果表明,钴空位的引入可以显著提高Co_(3)O_(4)的电催化性能.Co_(3)O_(4)-VCo(II)表现出最突出的析氧反应(OER)性能,反应动力学速率最快.X射线光电子能谱分析表明,在OER过程中,VCo(II)的存在可以使CoOOH活性位点快速形成.密度泛函理论计算表明,钴空位的引入使Co_(3)O_(4)拥有类似金属的导电性.VCo(II)的存在使得O p带中心靠近费米能级,自由能势垒降低,电催化剂表面氧交换动力学速率加快,对反应中间体的吸附能最佳,从而表现出优异的电化学性能.本研究为设计高效的富缺陷电催化剂提供了重要指导. 展开更多
关键词 cobalt vacancies spinel Co_(3)O_(4) electronic environment cobalt oxyhydroxides oxygen evolution reaction
原文传递
Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi_(2)O_(3)composite 被引量:4
2
作者 Tianhao Xi Xiaodan Li +4 位作者 Qihui Zhang Ning Liu Shu Niu Zhaojun Dong Cong Lyu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期109-119,共11页
Cobalt oxyhydroxide(CoOOH)has been turned out to be a high-efficiency catalyst for peroxymonosulfate(PMS)activation.In this study,CoOOH was loaded on bismuth oxide(Bi_(2)O_(3))using a facile chemical precipitation pro... Cobalt oxyhydroxide(CoOOH)has been turned out to be a high-efficiency catalyst for peroxymonosulfate(PMS)activation.In this study,CoOOH was loaded on bismuth oxide(Bi_(2)O_(3))using a facile chemical precipitation process to improve its catalytic activity and stability.The result showed that the catalytic performance on the 2,4-dichlorophenol(2,4-DCP)degradation was significantly enhanced with only 11 wt%Bi_(2)O_(3)loading.The degradation rate in the CoOOH@Bi_(2)O_(3)/PMS system(0.2011 min−1)was nearly 6.0 times higher than that in the CoOOH/PMS system(0.0337 min−1).Furthermore,CoOOH@Bi_(2)O_(3)displayed better stability with less Co ions leaching(16.4%lower than CoOOH)in the PMS system.These phenomena were attributed to the Bi_(2)O_(3)loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi_(2)O_(3)composite.Faster electron transfer facilitated the redox reaction of Co(III)/Co(II)and thus was more favorable for reactive oxygen species(ROS)generation.Meanwhile,larger specific surface area furnished more active sites for PMS activation.More importantly,there were both non-radical(^(1)O_(2))and radicals(SO_(4)^(−)•,O_(2)^(−)•,and OH•)in the CoOOH@Bi_(2)O_(3)/PMS system and^(1)O_(2)was the dominant one.In general,this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system. 展开更多
关键词 cobalt oxyhydroxide Bismuth oxide PEROXYMONOSULFATE 2 4-DICHLOROPHENOL Singlet oxygen Electron transfer
原文传递
A highly selective and instantaneous upconversion fluorescent nanoprobe for ascorbic acid detection in biological samples 被引量:1
3
作者 Yuanyuan Chen Tingting Zhang +3 位作者 Xiaonan Gao Wei Pan Na Li Bo Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第10期1983-1986,共4页
Ascorbic acid(AA) serves as a key coenzyme in many metabolic pathways. Enough daily AA supplements from different dietary sources are the only way for human to maintain their AA levels in body.Determination of AA co... Ascorbic acid(AA) serves as a key coenzyme in many metabolic pathways. Enough daily AA supplements from different dietary sources are the only way for human to maintain their AA levels in body.Determination of AA content in different foods guides to build healthy diet, which is of great biomedical significance. Hence, developing a highly selective and instantaneous fluorescent nanoprobe for the detection of AA in biological samples is highly needed. Here we present a novel turn-on fluorescent nanoprobe using lanthanide-doped upconversion nanoparticles(UCNPs) and cobalt oxyhydroxide(Co OOH) nanoflakes for monitoring AA in fruit samples. In this nanosystem, the UCNPs can be adsorbed onto the Co OOH nanoflakes, leading to a remarkable fluorescence decrease through Fo?rster resonance energy transfer. Furthermore, the AA could trigger the disassembly of the Co OOH to liberate the upconverted fluorescence. The UCNPs-based nanoprobe can provide an effective platform for highly selective and rapid detection of AA in biological samples. 展开更多
关键词 cobalt oxyhydroxide nanoflakes Upconversion nanoparticles Ascorbic acid Fluorescent nanoprobe Biological samples
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部