The effects of the modification of electrode/ceramic interfaces through a chemical solution deposition-derived PbO buffer layer on the fatigue endurance of lead zirconate titanate(PZT) thin films were investigated.T...The effects of the modification of electrode/ceramic interfaces through a chemical solution deposition-derived PbO buffer layer on the fatigue endurance of lead zirconate titanate(PZT) thin films were investigated.The grain size and the surface roughness of the PZT films increased through PbO interfacial modification.Moreover,the PZT films with PbO interfacial modification had a better crystallographic structure and no evident secondary phases were observed.While the remanent polarization and dielectric constant were reduced,the fatigue endurance was improved.Based on the results,the mechanism for the fatigue endurance improvement was discussed.展开更多
The behaviors of lead zirconate titanate (PZT) deposited as the dielectric for high-voltage devices are investigated experimentally and theoretically. The devices demonstrate not only high breakdown voltages above 3...The behaviors of lead zirconate titanate (PZT) deposited as the dielectric for high-voltage devices are investigated experimentally and theoretically. The devices demonstrate not only high breakdown voltages above 350 V, but also excellent memory behaviors. A drain current–gate voltage (ID-VG) memory window of about 2.2 V is obtained at the sweep voltages of ±10 V for the 350-V laterally diffused metal oxide semiconductor (LDMOS). The retention time of about 270 s is recorded for the LDMOS through a controlled ID-VG measurement. The LDMOS with memory behaviors has potential to be applied in future power conversion circuits to boost the performance of the energy conversion system.展开更多
In order to describe the characteristics of piezoelectric bimorph, properties of lead zirconate titanate (LZT) film are studied by X-ray diffraction (XRD) and scanning eletron microscope (SEM). The ratio of PbTi...In order to describe the characteristics of piezoelectric bimorph, properties of lead zirconate titanate (LZT) film are studied by X-ray diffraction (XRD) and scanning eletron microscope (SEM). The ratio of PbTiOJPbZrO3 in LZT is 53/47, which is around morphotropic phase boundary (MPB). LZT film is composed of cubic particles with the average size of 5 ~ma. Density of thin film is figured out through the datum measured in experiments. The displacement model used to analyze the driving ability of bimorph is set up, and the effect of elastic intermediate layer is taken into account. Piezoelectric coefficient of LZT film is worked out by using the displacement model. Experiments of driving ability show that deformation of bimorph free end does not increase with times of crystal growth processes and the maximum deformation is obtained after two times crystal growth processes. Finally, the ferroelectric property of the bimorph is investigated and coercive voltage of the bimorph is obtained.展开更多
To better understand the generation of electric power for piezoelectric Pb Zr Ti O3(PZT)ceramic plate(?25 mm),an attempt was made to investigate experimentally and numerically electricpower generation characteristics ...To better understand the generation of electric power for piezoelectric Pb Zr Ti O3(PZT)ceramic plate(?25 mm),an attempt was made to investigate experimentally and numerically electricpower generation characteristics during cyclic bending under various loading fixtures(?0–?20 mm),i.e.,different contact areas.Increasing the load-contact area on the PZT ceramic leads to a nonlinear decrease in the generated voltage.Decreasing contact area basically enhances the generated voltage,although the voltage saturates during loading when the contact area is less than?5 mm.A similar voltage is generated for?0 and?5 mm,which is attributed to strain status(ratio of compressive and tensile strain)and material failure due to different stress distribution in the PZT ceramic.On the basis of the obtained electric generation voltage,suitable loading conditions are clarified by loading with the?5 mm fixture,which generates a higher voltage and a longer lifetime of the PZT ceramic.From this approach,it is appeared that the area contact with the area ratio of 0.04(?5 mm/?20 mm)is suitable to obtain the high efficiency of the electric voltage.展开更多
The volume anomalies with temperature variations in tin-modified lead zirconate titanate ceramics are investigated. Experimental results show that the volume changes are related to the phase transitions induced with t...The volume anomalies with temperature variations in tin-modified lead zirconate titanate ceramics are investigated. Experimental results show that the volume changes are related to the phase transitions induced with temperature. The magnitude and orientation of crystal volume changes are dependent on the particular phase transition. When antiferroelectrics is transformed to ferroelectrics or paraelectrics the volume expands. Oppositely when ferroelectrics is transformed to antiferroelectrics or paraelectrics the volume contracts. In the transition of antiferroelectric orthorhombic structure to tetragonal structure or ferroelectric low-temperature rhombohedral structure to high-temperature rhombohedral structure, there are also revealed apparent anomalies in the curves of thermal expansion. Among them, the volume strain caused by the transition between antiferroelectrics and ferroelectrics is the biggest in magnitude, and the linear expansion dL/L0 and the expansion coefficient (dL/L0)/dT can reach 2.展开更多
采用传统的固相反应法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1))O_(3)(BCZT)以及掺杂Al-Mg-Ca玻璃粉的BCZT无铅压电陶瓷。首先研究了预烧温度对BCZT陶瓷粉体的影响,其次研究了掺杂Al-Mg-Ca玻璃粉对BCZT无铅压电陶瓷的烧结性能、介...采用传统的固相反应法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1))O_(3)(BCZT)以及掺杂Al-Mg-Ca玻璃粉的BCZT无铅压电陶瓷。首先研究了预烧温度对BCZT陶瓷粉体的影响,其次研究了掺杂Al-Mg-Ca玻璃粉对BCZT无铅压电陶瓷的烧结性能、介电性能和压电性能的影响。最后通过正交试验确定了其烧结工艺。结果显示BCZT粉体的最佳预烧温度在1100℃。掺杂Al-Mg-Ca玻璃粉能够有效降低BCZT陶瓷的烧结温度。通过烧结工艺正交实验获得了最佳烧结工艺:1100℃预烧,1350℃烧结,升温速度为2℃/min,保温时间为7 h,在110 min降温至800℃。验证正交试验所得到的结果是掺杂Al-Mg-Ca玻璃粉的BCZT陶瓷的居里温度点的介电常数为12228,压电常数d_(33)为425 p C/N。展开更多
基金support of Beijing Nova Program of China (2007B025)the National Natural Science Foundation of China (10979013)+1 种基金the Innovative Research Team in Universities (IRT 0509)the Major State Basic Research Development Program of China (No.2009CB623306)
文摘The effects of the modification of electrode/ceramic interfaces through a chemical solution deposition-derived PbO buffer layer on the fatigue endurance of lead zirconate titanate(PZT) thin films were investigated.The grain size and the surface roughness of the PZT films increased through PbO interfacial modification.Moreover,the PZT films with PbO interfacial modification had a better crystallographic structure and no evident secondary phases were observed.While the remanent polarization and dielectric constant were reduced,the fatigue endurance was improved.Based on the results,the mechanism for the fatigue endurance improvement was discussed.
基金the National Basic Research Program of China(Grant No.50772019)the National Natural Science Foundation of China(Grant No.61204084)
文摘The behaviors of lead zirconate titanate (PZT) deposited as the dielectric for high-voltage devices are investigated experimentally and theoretically. The devices demonstrate not only high breakdown voltages above 350 V, but also excellent memory behaviors. A drain current–gate voltage (ID-VG) memory window of about 2.2 V is obtained at the sweep voltages of ±10 V for the 350-V laterally diffused metal oxide semiconductor (LDMOS). The retention time of about 270 s is recorded for the LDMOS through a controlled ID-VG measurement. The LDMOS with memory behaviors has potential to be applied in future power conversion circuits to boost the performance of the energy conversion system.
基金This project is supported by National Natural Science Foundation of China (No.50675025)Scientific Research Foundation of Ministry of Education,Dalian City for the Returned Overseas Chinese ScholarsDoctoral Startup Fund of Liaoning Province of China (No.20051080).
文摘In order to describe the characteristics of piezoelectric bimorph, properties of lead zirconate titanate (LZT) film are studied by X-ray diffraction (XRD) and scanning eletron microscope (SEM). The ratio of PbTiOJPbZrO3 in LZT is 53/47, which is around morphotropic phase boundary (MPB). LZT film is composed of cubic particles with the average size of 5 ~ma. Density of thin film is figured out through the datum measured in experiments. The displacement model used to analyze the driving ability of bimorph is set up, and the effect of elastic intermediate layer is taken into account. Piezoelectric coefficient of LZT film is worked out by using the displacement model. Experiments of driving ability show that deformation of bimorph free end does not increase with times of crystal growth processes and the maximum deformation is obtained after two times crystal growth processes. Finally, the ferroelectric property of the bimorph is investigated and coercive voltage of the bimorph is obtained.
文摘To better understand the generation of electric power for piezoelectric Pb Zr Ti O3(PZT)ceramic plate(?25 mm),an attempt was made to investigate experimentally and numerically electricpower generation characteristics during cyclic bending under various loading fixtures(?0–?20 mm),i.e.,different contact areas.Increasing the load-contact area on the PZT ceramic leads to a nonlinear decrease in the generated voltage.Decreasing contact area basically enhances the generated voltage,although the voltage saturates during loading when the contact area is less than?5 mm.A similar voltage is generated for?0 and?5 mm,which is attributed to strain status(ratio of compressive and tensile strain)and material failure due to different stress distribution in the PZT ceramic.On the basis of the obtained electric generation voltage,suitable loading conditions are clarified by loading with the?5 mm fixture,which generates a higher voltage and a longer lifetime of the PZT ceramic.From this approach,it is appeared that the area contact with the area ratio of 0.04(?5 mm/?20 mm)is suitable to obtain the high efficiency of the electric voltage.
基金This work was supported by the National Defensive Pre-research Fund of China (Grant No. 98J2.1.9).
文摘The volume anomalies with temperature variations in tin-modified lead zirconate titanate ceramics are investigated. Experimental results show that the volume changes are related to the phase transitions induced with temperature. The magnitude and orientation of crystal volume changes are dependent on the particular phase transition. When antiferroelectrics is transformed to ferroelectrics or paraelectrics the volume expands. Oppositely when ferroelectrics is transformed to antiferroelectrics or paraelectrics the volume contracts. In the transition of antiferroelectric orthorhombic structure to tetragonal structure or ferroelectric low-temperature rhombohedral structure to high-temperature rhombohedral structure, there are also revealed apparent anomalies in the curves of thermal expansion. Among them, the volume strain caused by the transition between antiferroelectrics and ferroelectrics is the biggest in magnitude, and the linear expansion dL/L0 and the expansion coefficient (dL/L0)/dT can reach 2.
文摘采用传统的固相反应法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1))O_(3)(BCZT)以及掺杂Al-Mg-Ca玻璃粉的BCZT无铅压电陶瓷。首先研究了预烧温度对BCZT陶瓷粉体的影响,其次研究了掺杂Al-Mg-Ca玻璃粉对BCZT无铅压电陶瓷的烧结性能、介电性能和压电性能的影响。最后通过正交试验确定了其烧结工艺。结果显示BCZT粉体的最佳预烧温度在1100℃。掺杂Al-Mg-Ca玻璃粉能够有效降低BCZT陶瓷的烧结温度。通过烧结工艺正交实验获得了最佳烧结工艺:1100℃预烧,1350℃烧结,升温速度为2℃/min,保温时间为7 h,在110 min降温至800℃。验证正交试验所得到的结果是掺杂Al-Mg-Ca玻璃粉的BCZT陶瓷的居里温度点的介电常数为12228,压电常数d_(33)为425 p C/N。