Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s...Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from ...Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.展开更多
Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would indu...Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.展开更多
Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,c...Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.展开更多
In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced...In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 ℃) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba_(0.75)Sr_(0.25)Fe_(0.875)Ga_(0.125)O_(3−δ) (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Ω cm^(2) and a high peak power density of 1145 mW cm^(−2) at 600 ℃. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
A cobalt-free perovskite-type Ba0.5Sr0.5A10.1Fe0.9O3-δ (BSAF) chemically studied as solid oxide fuel cell (SOFC) cathode. The ductivity, and electrode polarizations in symmetrical cell based is developed and elec...A cobalt-free perovskite-type Ba0.5Sr0.5A10.1Fe0.9O3-δ (BSAF) chemically studied as solid oxide fuel cell (SOFC) cathode. The ductivity, and electrode polarizations in symmetrical cell based is developed and electro- structures, electrical con- on mixed ion conducting electrolyte were investigated, respectively. The temperature dependence of conductivity of BSAF in air shows a typical semiconductor behavior with positive temperature coefficient up to 450℃ where the conductivity reaches 14.0 S/cm while above this temperature the negative temperature coefficient dominates the total conductivity. Electrochemical charac- terizations show desirable polarization resistance of BSAF cathode in a symmetric cell based on mixed ion conducting electrolyte at 650-700℃, A single SOFC with BSAF cathode shows OCV of 1.0 V and maximum output of 420 mW/cm2 at 700 ℃ with humidified hydrogen fuel and static air oxidant.展开更多
Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a ...Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a cobalt-free perovskite oxygen electrode for high-performance R-PCECs where Y ions doping can increase the concentration of oxygen vacancies with a remarkable increase in catalytic performance.The cell with confi guration of Ni-BZCYYb/BZCYYb/BFZY3 demonstrated promising performance in dual modes of fuel cells(FCs)and electrolysis cells(ECs)at 650℃with low polarization resistance of 0.13Ωcm^(2),peak power density of 546.59 mW/cm^(2)in FC mode,and current density of−1.03 A/cm^(2)at 1.3 V in EC mode.The alternative operation between FC and EC modes for up to eight cycles with a total of 80 h suggests that the cell with BFZY3 is exceptionally stable and reversible over the long term.The results indicated that BFZY3 has considerable potential as an air electrode material for R-PCECs,permitting effi cient oxygen reduction and water splitting.展开更多
A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution...A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.展开更多
A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combusti...A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combustion method. The phase and micro-structure of YCBCF were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The aver-age thermal expansion coefficient (TEC) of YCBCF was 14.6×10–6 K–1, which was close to other materials of SOFC at the range of RT–1000 oC. An open-circuit potential of 0.75 V and a maximum output power density of 426 mW/cm2 were obtained at 650 oC in a Sm0.2Ce0.8O1.9 (SDC)-based anode-supported SOFC by using humidified (~3%H2O) hydrogen as fuel and static air as oxidant. The results indicated that the YCBCF was a promising cathode candidate for IT-SOFCs.展开更多
Acceleration of the oxygen reduction reaction at the cathode is paramount in the development of low-temperature solid oxide fuel cells.At low operating temperatures between 450 and 600℃,the interactions between the s...Acceleration of the oxygen reduction reaction at the cathode is paramount in the development of low-temperature solid oxide fuel cells.At low operating temperatures between 450 and 600℃,the interactions between the surface and the bulk of the cathode materials greatly impact the electrode kinetics and consequently determine the overall efficacy and long-term stability of the fuel cells.This review will provide an overview of the recent progress in the understanding of surface-bulk interactions in perovskite oxides as well as their impact on cathode reactivity and stability.This review will also summarize current strategies in the development of cathode materials through bulk doping and surface functionalization.In addition,this review will highlight the roles of surface segregation in the mediation of surface and bulk interactions,which have profound impacts on the properties of cathode surfaces and the bulk and therefore overall cathode performance.Although trade-offs between reactivity and stability commonly exist in terms of catalyst design,opportunities also exist in attaining optimal cathode performance through the modulation of both cathode surfaces and bulk using combined strategies.This review will conclude with future research directions involving investigations into the role of oxygen vacancy and mobility in catalysis,the rational modulation of surface-bulk interactions and the use of advanced fabrication techniques,all of which can lead to optimized cathode performance.展开更多
Owing to the further requirement for electric vehicle market, it is appropriate to lower the cost and improve the energy density of lithium-ion batteries by adopting the Co-free and Ni-rich layered cathodes.However, t...Owing to the further requirement for electric vehicle market, it is appropriate to lower the cost and improve the energy density of lithium-ion batteries by adopting the Co-free and Ni-rich layered cathodes.However, their practical application is severely limited by structural instability and slow kinetics. Herein,ultrahigh-nickel cobalt-free LiNi_(0.9)Mn_(0.1)O_(2) cathode is elaborate designed via in-situ trace substitution of tungsten by a wet co-precipitation method following by high-temperature sintering. It is revealed that the in-situ doping strategy of high valence W^(6+) can effectively improve the structure stability by reducing irreversible phase transition and suppressing the formation of microcracks. Moreover, the transformed fine particles determined by W-doping can facilitate the kinetic characteristics by shortening Li^(+) diffusion paths. As expected, 0.3 mol% W-doped LiNi_(0.9)Mn_(0.1)O_(2) cathode exhibits a high specific capacity of 143.5 mAh/g after 200 cycles at high rate of 5 C in the wide potential range of 2.8-4.5 V, representing a potential next-generation cathode with low-cost, high energy-density and fast-charging capabilities.展开更多
This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneo...This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.展开更多
Inverted perovskite solar cells(PerSCs)are a highly promising candidate in the photovoltaic field due to their low-temperature fabrication process,negligible hysteresis,and easy integration with Si-based solar cells.A...Inverted perovskite solar cells(PerSCs)are a highly promising candidate in the photovoltaic field due to their low-temperature fabrication process,negligible hysteresis,and easy integration with Si-based solar cells.A cathode interlayer(CIL)is necessary in the development of inverted devices to reduce the trap density and energy barrier between the electron transport layer(ETL)and the electrode.However,most CILs are highly thickness-sensitive due to low conductivity and poor film-forming.In this study,we report on a self-doping perylene imide-based ionene polymer(PNPDIN)used as CIL material to modify electrode in inverted PerSCs.PNPDIN exhibits high conductivity and a good solubility in polar solvent,which results in an improved power conversion efficiency(PCE)from 10.05%(device without a CIL)to 16.97%.When the blend of PNPDIN and Bphen was used as a mixed CIL,the PCE of PerSCs can be further increased to 21.28%owing to the excellent morphology and matched energy level.More importantly,the PCE of the device is highly tolerant to the thickness of the mixed CIL,which benefited from the high conductivity of PNPDIN.This development is expected to provide an excellent mixed CIL material for roll-to-roll processing efficient and stable inverted PerSCs.展开更多
A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absor...A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absorber.The device with PCBDANI single CBL exhibited significantly improved performance with a power conversion efficiency(PCE)of 15.45%,which is approximately17%higher than that of the control device without the CBL.The dramatic improvement in PCE can be attributed to the formation of an interfacial dipole at the PCBM/Al interface originating from the amine functional group and the suppression of interfacial recombinationby the PCBDANI interlayer.To further improve the PCE of pero-SCs,PCBDANI/LiF double CBLs were introduced between PCBM and the top Al electrode.An impressive PCE of 15.71%was achieved,which is somewhat higher than that of the devices with LiF or PCBDANI single CBL.Besides the PCE,the long-term stability of the device with PCBDANI/LiF double CBLs is also superior to that of the device with LiF single CBL.展开更多
Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported ...Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported that a cubic perovskite fluoride can serve as open framework cathode for high-rate展开更多
基金financial support from the Natural Science Foundation of Shandong Province (ZR2022QB140)the PhD Initiation Program of Liaocheng University (318052138)the Natural Science Foundation of Shandong Province (ZR2023MB002 and ZR2021MB114)。
文摘Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金the financial supports from the Key Research and Development Project in Shaanxi Province(2023-YBGY-446)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD003)。
文摘Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.
基金funded by the Key R&D Program of Jilin Province(20220201132GX)the Key R&D Program of Hubei Province(2022BAA084)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2023008)。
文摘Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.
基金financially supported by the project of International Science&Technology Cooperation of China(No.2019YFE0100200)。
文摘Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.
基金This work was financially supported by a startup R&D funding from One-Hundred Young Talents Program of Guangdong University of Technology,China(No.220413180)a Foundation for Youth Innovative Talents in Higher Education of Guangdong Province,China(No.2018KQNCX060)+1 种基金Joint Funds of Basic and Applied Basic Research Foundation of Guangdong Province,China(No.2019A1515110322)grants from Research Grant Council,University Grants Committee,Hong Kong SAR(Nos.PolyU 152214/17E and PolyU 152064/18E).
文摘In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 ℃) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba_(0.75)Sr_(0.25)Fe_(0.875)Ga_(0.125)O_(3−δ) (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Ω cm^(2) and a high peak power density of 1145 mW cm^(−2) at 600 ℃. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
文摘A cobalt-free perovskite-type Ba0.5Sr0.5A10.1Fe0.9O3-δ (BSAF) chemically studied as solid oxide fuel cell (SOFC) cathode. The ductivity, and electrode polarizations in symmetrical cell based is developed and electro- structures, electrical con- on mixed ion conducting electrolyte were investigated, respectively. The temperature dependence of conductivity of BSAF in air shows a typical semiconductor behavior with positive temperature coefficient up to 450℃ where the conductivity reaches 14.0 S/cm while above this temperature the negative temperature coefficient dominates the total conductivity. Electrochemical charac- terizations show desirable polarization resistance of BSAF cathode in a symmetric cell based on mixed ion conducting electrolyte at 650-700℃, A single SOFC with BSAF cathode shows OCV of 1.0 V and maximum output of 420 mW/cm2 at 700 ℃ with humidified hydrogen fuel and static air oxidant.
基金support from the National Key Research&Development Project(2022YFB4002201)National Natural Science Foundation of China(Nos.52172199,52072135,52002121)+1 种基金Hubei Province(2023BAB115)Jiangsu Province(BZ2022027).
文摘Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a cobalt-free perovskite oxygen electrode for high-performance R-PCECs where Y ions doping can increase the concentration of oxygen vacancies with a remarkable increase in catalytic performance.The cell with confi guration of Ni-BZCYYb/BZCYYb/BFZY3 demonstrated promising performance in dual modes of fuel cells(FCs)and electrolysis cells(ECs)at 650℃with low polarization resistance of 0.13Ωcm^(2),peak power density of 546.59 mW/cm^(2)in FC mode,and current density of−1.03 A/cm^(2)at 1.3 V in EC mode.The alternative operation between FC and EC modes for up to eight cycles with a total of 80 h suggests that the cell with BFZY3 is exceptionally stable and reversible over the long term.The results indicated that BFZY3 has considerable potential as an air electrode material for R-PCECs,permitting effi cient oxygen reduction and water splitting.
基金Project Supported bythe Natural Science Foundation of Bureau Education Anhui Province (N2004kj326)
文摘A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.
基金Project supported by the National Natural Science Foundation of China(51102107,51202080)Anhui Science and Technology Project(1206c0805038)
文摘A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combustion method. The phase and micro-structure of YCBCF were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The aver-age thermal expansion coefficient (TEC) of YCBCF was 14.6×10–6 K–1, which was close to other materials of SOFC at the range of RT–1000 oC. An open-circuit potential of 0.75 V and a maximum output power density of 426 mW/cm2 were obtained at 650 oC in a Sm0.2Ce0.8O1.9 (SDC)-based anode-supported SOFC by using humidified (~3%H2O) hydrogen as fuel and static air as oxidant. The results indicated that the YCBCF was a promising cathode candidate for IT-SOFCs.
基金the financial support from the China Scholarship Council(CSC).M.Li acknowledges the financial support from the HBIS Group and the Australian Research Council(ARC)Linkage Project(LP160101729)Z.Zhu acknowledges the financial support from the ARC Discovery Projects(DP170104660 and DP190101782).
文摘Acceleration of the oxygen reduction reaction at the cathode is paramount in the development of low-temperature solid oxide fuel cells.At low operating temperatures between 450 and 600℃,the interactions between the surface and the bulk of the cathode materials greatly impact the electrode kinetics and consequently determine the overall efficacy and long-term stability of the fuel cells.This review will provide an overview of the recent progress in the understanding of surface-bulk interactions in perovskite oxides as well as their impact on cathode reactivity and stability.This review will also summarize current strategies in the development of cathode materials through bulk doping and surface functionalization.In addition,this review will highlight the roles of surface segregation in the mediation of surface and bulk interactions,which have profound impacts on the properties of cathode surfaces and the bulk and therefore overall cathode performance.Although trade-offs between reactivity and stability commonly exist in terms of catalyst design,opportunities also exist in attaining optimal cathode performance through the modulation of both cathode surfaces and bulk using combined strategies.This review will conclude with future research directions involving investigations into the role of oxygen vacancy and mobility in catalysis,the rational modulation of surface-bulk interactions and the use of advanced fabrication techniques,all of which can lead to optimized cathode performance.
基金financial support from the National Natural Science Foundation of China (Nos. 51908555, 52070194)。
文摘Owing to the further requirement for electric vehicle market, it is appropriate to lower the cost and improve the energy density of lithium-ion batteries by adopting the Co-free and Ni-rich layered cathodes.However, their practical application is severely limited by structural instability and slow kinetics. Herein,ultrahigh-nickel cobalt-free LiNi_(0.9)Mn_(0.1)O_(2) cathode is elaborate designed via in-situ trace substitution of tungsten by a wet co-precipitation method following by high-temperature sintering. It is revealed that the in-situ doping strategy of high valence W^(6+) can effectively improve the structure stability by reducing irreversible phase transition and suppressing the formation of microcracks. Moreover, the transformed fine particles determined by W-doping can facilitate the kinetic characteristics by shortening Li^(+) diffusion paths. As expected, 0.3 mol% W-doped LiNi_(0.9)Mn_(0.1)O_(2) cathode exhibits a high specific capacity of 143.5 mAh/g after 200 cycles at high rate of 5 C in the wide potential range of 2.8-4.5 V, representing a potential next-generation cathode with low-cost, high energy-density and fast-charging capabilities.
文摘This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant No.LH2023E035)the Heilongjiang Provincial Postdoctoral Science Foundation(Grant No.LBH-TZ0604)+1 种基金the Open Fund of the State Key Laboratory of Luminescent Materials and Devices,South China University of Technology(Grant No.2022-skllmd-08)the National Key Research and Development Program of China(No.2019YFA0705201).
文摘Inverted perovskite solar cells(PerSCs)are a highly promising candidate in the photovoltaic field due to their low-temperature fabrication process,negligible hysteresis,and easy integration with Si-based solar cells.A cathode interlayer(CIL)is necessary in the development of inverted devices to reduce the trap density and energy barrier between the electron transport layer(ETL)and the electrode.However,most CILs are highly thickness-sensitive due to low conductivity and poor film-forming.In this study,we report on a self-doping perylene imide-based ionene polymer(PNPDIN)used as CIL material to modify electrode in inverted PerSCs.PNPDIN exhibits high conductivity and a good solubility in polar solvent,which results in an improved power conversion efficiency(PCE)from 10.05%(device without a CIL)to 16.97%.When the blend of PNPDIN and Bphen was used as a mixed CIL,the PCE of PerSCs can be further increased to 21.28%owing to the excellent morphology and matched energy level.More importantly,the PCE of the device is highly tolerant to the thickness of the mixed CIL,which benefited from the high conductivity of PNPDIN.This development is expected to provide an excellent mixed CIL material for roll-to-roll processing efficient and stable inverted PerSCs.
基金the National Natural Science Foundation of China(21204054,51303118,91333204)the Natural Science Foundation of Jiangsu Province(BK20130289)+3 种基金the Ph.D.Programs Foundation of Ministry of Education of China(20133201120008)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation for Returned Scholars,Ministry of Education of ChinaBeijing National Laboratory for Molecular Sciences,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
文摘A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absorber.The device with PCBDANI single CBL exhibited significantly improved performance with a power conversion efficiency(PCE)of 15.45%,which is approximately17%higher than that of the control device without the CBL.The dramatic improvement in PCE can be attributed to the formation of an interfacial dipole at the PCBM/Al interface originating from the amine functional group and the suppression of interfacial recombinationby the PCBDANI interlayer.To further improve the PCE of pero-SCs,PCBDANI/LiF double CBLs were introduced between PCBM and the top Al electrode.An impressive PCE of 15.71%was achieved,which is somewhat higher than that of the devices with LiF or PCBDANI single CBL.Besides the PCE,the long-term stability of the device with PCBDANI/LiF double CBLs is also superior to that of the device with LiF single CBL.
文摘Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported that a cubic perovskite fluoride can serve as open framework cathode for high-rate