期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Integration of earth-abundant cocatalysts for high-performance photoelectrochemical energy conversion
1
作者 Joonhee Ma Sang Hyun Ahn Soo Young Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期336-355,I0008,共21页
Photoelectrochemical(PEC)energy conversion has emerged as a promising and efficient approach to sustainable energy harvesting and storage.By utilizing semiconductor photoelectrodes,PEC devices can harness solar energy... Photoelectrochemical(PEC)energy conversion has emerged as a promising and efficient approach to sustainable energy harvesting and storage.By utilizing semiconductor photoelectrodes,PEC devices can harness solar energy and drive electrochemical reactions such as water splitting or carbon dioxide(CO_(2))reduction to generate clean fuels and value-added chemicals.However,PEC energy conversion faces several challenges such as high overpotential,sluggish reaction kinetics,charge carrier recombination,and stability issues,which limit its practical implementation.Recently,significant research has been conducted to improve the overall conversion efficiency of PEC devices.One particularly promising approach is the use of cocatalysts,which involves introducing specific cocatalysts onto the photoelectrode surface to promote charge separation,improve reaction kinetics,and reduce the overpotential,thereby enhancing the overall performance of PEC energy conversion.This review provides a comprehensive overview of the recent developments in the earth-abundant cocatalysts for PEC water splitting and CO_(2) reduction.The main earth-abundant catalysts for the PEC water splitting include transition-metal dichalcogenide(TMD)-based materials,metal phosphides/carbides,and metal oxides/hydroxides.Meanwhile,PEC-CO_(2)RR was divided into C_(1) and C_(2+)based on the final product since various products could be produced,focusing on diverse earth-abundant materials-based cocatalysts.In addition,we provide and highlight key advancements achieved in the very recent reports on novel PEC system design engineering with cocatalysts.Finally,the current problems associated with PEC systems are discussed along with a suggested direction to overcome these obstacles. 展开更多
关键词 Solar energy Photo-electrochemical Water splitting CO_(2)reduction COCATALYSTS
下载PDF
Single-atom modified graphene cocatalyst for enhanced photocatalytic CO_(2) reduction on halide perovskite
2
作者 Hui Fu Jin Tian +5 位作者 Qianqian Zhang Zhaoke Zheng Hefeng Cheng Yuanyuan Liu Baibiao Huang Peng Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期143-151,共9页
Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.Howe... Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications. 展开更多
关键词 Bismuth-based perovskite Photocatalysis CO_(2) reduction Single-atom cocatalyst Charge separation
下载PDF
Mg-doped SrTaO_(2)N as a visible-light-driven H_(2)-evolution photocatalyst for accelerated Z-scheme overall water splitting
3
作者 Jun Xu Ying Luo +4 位作者 Qiaoqi Guo Wenzheng Sun Shanshan Chen Zheng Wang Hong He 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期70-78,共9页
Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o... Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy. 展开更多
关键词 Photocatalytic overall water splitting SrTaO_(2)N photocatalyst Mg doping Defect density COCATALYST
下载PDF
Highly selective photocatalytic reduction of CO_(2) to CH_(4) on electron-rich Fe species cocatalyst under visible light irradiation
4
作者 Qianying Lin Jiwu Zhao +8 位作者 Pu Zhang Shuo Wang Ying Wang Zizhong Zhang Na Wen Zhengxin Ding Rusheng Yuan Xuxu Wang Jinlin Long 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期255-266,共12页
Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrat... Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrate unprecedented hybrid SiC photocatalysts modified by Fe-based cocatalyst,which are prepared via a facile impregnation-reduction method,featuring an optimized local electronic structure.It exhibits a superior photocatalytic carbon-based products yield of 30.0μmol g^(−1) h^(−1) and achieves a record CH_(4) selectivity of up to 94.3%,which highlights the effectiveness of electron-rich Fe cocatalyst for boosting photocatalytic performance and selectivity.Specifically,the synergistic effects of directional migration of photogenerated electrons and strongπ-back bonding on low-valence Fe effectively strengthen the adsorption and activation of reactants and intermediates in the CO_(2)→CH_(4) pathway.This study inspires an effective strategy for enhancing the multielectron reduction capacity of semiconductor photocatalysts with low-cost Fe instead of noble metals as cocatalysts. 展开更多
关键词 artificial synthesis of CH_(4) electronic structure optimization Fe species cocatalyst photocatalytic CO_(2) reduction SiC
下载PDF
Selectivity control of photocatalytic CO_(2) reduction over ZnS-based nanocrystals:A comparison study on the role of ionic cocatalysts
5
作者 Hong Pang Fumihiko Ichihara +4 位作者 Xianguang Meng Lijuan Li Yuqi Xiao Wei Zhou Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期391-398,I0009,共9页
Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorga... Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorganic reaction system is investigated.Confined single-atom Ni^(2+),Co^(2+),and Cd^(2+)sites were created via cation-exchange process and enhanced CO_(2)reduction,while Fe^(2+)suppressed the photocatalytic activity for both water and CO_(2)reduction.The modified ZnS:Cu photocatalysts(M/ZnS:Cu)demonstrated tunable product selectivity,with Ni^(2+)and Co^(2+)showing high selectivity for syngas production and Cd^(2+)displaying remarkable formate selectivity.DFT calculations indicated favorable H adsorption free energy on Ni^(2+)and Co^(2+)sites,promoting the hydrogen evolution reaction.The selectivity of CO_(2)reduction products was found to be sensitive to the initial intermediate adsorption states.*COOH formed on Ni^(2+)and Co^(2+)while*OCHO formed on Cd^(2+),favoring the production of CO and HCOOH as the main products,respectively.This work provides valuable insights for developing efficient solar-to-fuel platforms with controlled CO_(2)reduction selectivity. 展开更多
关键词 CO_(2) reduction Photocatalysis Zns Ionic cocatalyst FORMATE Syngas DFT calculations
下载PDF
The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride:Boosted photocatalytic hydrogen evolution performance and mechanism exploration
6
作者 Zhangqian Liang Yanjun Xue +3 位作者 Xinyu Wang Xiaoli Zhang Jian Tian Hongzhi Cui 《Nano Materials Science》 EI CAS CSCD 2023年第2期202-209,共8页
2D-layered graphitic carbon nitride(g-C_(3)N_(4))is regarded as a great prospect as a photocatalyst for H_(2)generation.However,g-C_(3)N_(4)’s photocatalytic hydrogen evolution(HER)activity is significantly restricte... 2D-layered graphitic carbon nitride(g-C_(3)N_(4))is regarded as a great prospect as a photocatalyst for H_(2)generation.However,g-C_(3)N_(4)’s photocatalytic hydrogen evolution(HER)activity is significantly restricted by the recombination of photocarriers.We find that cobalt sulfide(CoS_(2))as a cocatalyst can promote g-C_(3)N_(4)nanosheets(NSs)to realize very efficient photocatalytic H_(2)generation.The prepared CoS_(2)/g-C_(3)N_(4)hybrids display highly boosted photocatalytic H_(2)generation performance and outstanding cycle stability.The optimized 7%-CoS_(2)/g-C_(3)N_(4)hybrids show a much improved photocatalytic H_(2)generation rate of 36.2μmol-1h-1,which is about 180 times as much as bare g-C_(3)N_(4)(0.2μmol-1h-1).In addition,the apparent quantum efficiency(AQE)of all the samples was computed under light atλ=370 nm,in which the AQE of 7%-CoS_(2)/g-C_(3)N_(4)hybrids is up to 5.72%.The experimental data and the DFT calculation suggest that the CoS_(2)/g-C_(3)N_(4)hybrid’s excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER.Accordingly,the CoS_(2)cocatalyst loading effectively boosts the photocatalytic performance of g-C_(3)N_(4)for H_(2)evolution.The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H_(2)generation. 展开更多
关键词 Non-precious-metal cocatalysts Photocatalytic hydrogen evolution reaction CoS_(2)cocatalysts 2D-layered g-C_(3)N_(4)
下载PDF
Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO_(2)reduction and H_(2)production:A critical review
7
作者 Muhammad Tahir Azmat Ali Khan +3 位作者 Sehar Tasleem Rehan Mansoor Areen Sherryna Beenish Tahir 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期295-331,I0008,共38页
Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising coc... Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising cocatalysts based on their metallic conductivity,excessive active reaction sites,and enlarged surface area.The current review focuses on the properties and applications of Ti_(3)C_(2)MXenes useful in the field of photocatalysis.More specifically,surface modification of Ti_(3)C_(2)MXenes by varying synthesis parameters to get pure materials and also composites with the role of functional groups towards solar energy conversion applications is highlighted in this review.The effect of etching and oxidizing pathways to get an efficient cocatalyst has been discussed in detail.Considering the significant effect of parameters,optimum synthesis conditions such as etchant type,concentration,time and type of intercalant in both the Ti_(3)C_(2)synthesis approaches for improved photoactivity are discussed.Additionally,the surface modification of Ti_(3)C_(2)through oxidation for TiO2growth on its surface is deliberated with a detailed discussion on etchant type,concentration,etching time,and environmental factors.The optimum oxidation condition,including temperature,time,and environment for thermal treatment of Ti_(3)C_(2),were also included.Lastly,the review summarizes the conclusion and future perspectives for solar energy conversion applications. 展开更多
关键词 Solar to energy conversion Ti_(3)C_(2)nanomaterials Termination groups MXene cocatalyst Synthesis parameters
下载PDF
Synthesis of AgCl/Ti_(3)C_(2)@TiO_(2)Ternary Composite Photocatalysts for Photocatalytic Oxidation of 1,4-Dihydropyridine and Tetracycline Hydrochloride
8
作者 Wu Hanliu Quan Yan +3 位作者 Liu Meiling Tian Xuemei Ren Chunguang Wang Zhonghua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期10-23,共14页
AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher ... AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process. 展开更多
关键词 AgCl/Ti_(3)C_(2)@TiO_(2) composite photocatalyst COCATALYST heterojunction structure in situ solvothermal growth method
下载PDF
Position-selected cocatalyst modification on a Z-scheme Cd_(0.5)Zn_(0.5)S/NiTiO_(3) photocatalyst for boosted H_(2) evolution
9
作者 Bifang Li Wenyu Guo +3 位作者 Xue Feng Lu Yidong Hou Zhengxin Ding Sibo Wang 《Materials Reports(Energy)》 EI 2023年第4期52-59,共8页
Photocatalytic water splitting by semiconductors is a promising technology to produce clean H_(2) fuel,but the efficiency is restrained seriously by the high overpotential of the H_(2)-evolution reaction together with... Photocatalytic water splitting by semiconductors is a promising technology to produce clean H_(2) fuel,but the efficiency is restrained seriously by the high overpotential of the H_(2)-evolution reaction together with the high recombination rate of photoinduced charges.To enhance H_(2) production,it is highly desirable yet challenging to explore an efficient reductive cocatalyst and place it precisely on the right sites of the photocatalyst surface to work the proton reduction reaction exclusively.Herein,the metalloid NixP cocatalyst is exactly positioned on the Z-scheme Cd_(0.5)Zn_(0.5)S/NiTiO_(3)(CZS/NTO)heterostructure through a facile photodeposition strategy,which renders the cocatalyst form solely at the electron-collecting locations.It is revealed that the directional transfer of photoexcited electrons from Cd_(0.5)Zn_(0.5)S to Ni_(x)P suppresses the quenching of charge carriers.Under visible light,the CZS/NTO hybrid loaded with the Ni_(x)P cocatalyst exhibits an optimal H_(2) yield rate of 1103μmol h^(-1)(i.e.,27.57 mmol h^(-1)g^(-1)),which is about twofold of pristine CZS/NTO and comparable to the counterpart deposited with the Pt cocatalyst.Besides,the high apparent quantum yield(AQY)of 56%is reached at 400 nm.Further,the mechanisms of the cocatalyst formation and the H2 generation reaction are discussed in detail. 展开更多
关键词 Photocatalysis Ni_(x)P COCATALYSTS Z-scheme H_(2)evolution
下载PDF
Facile synthesis and enhanced photocatalytic H_2-evolution performance of NiS_2-modified g-C_3N_4 photocatalysts 被引量:11
10
作者 陈峰 杨慧 +1 位作者 王雪飞 余火根 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期296-304,共9页
NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the mic... NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the microstructures of the g-C3N4 photocatalysts.In this study,a facile and low-temperature(80 ℃) impregnation method was developed to prepare NiS2/g-C3N4 photocatalysts.First,the g-C3N4 powders were processed by the hydrothermal method in order to introduce oxygen-containing functional groups(such as-OH and-C0NH-) to the surface of g-C3N4.Then,the Ni^2+ ions could be adsorbed near the g-C3N4 via strong electrostatic interaction between g-C3N4 and Ni^2+ ions upon the addition of Ni(NO3)2 solution.Finally,NiS2 nanoparticles were formed on the surface of g-C3N4 upon the addition of TAA.It was found that the NiS2 nanoparticles were solidly and homogeneously grafted on the surface of g-C3N4,resulting in greatly improved photocatalytic H2production.When the amount of NiS2 was 3 wt%,the resultant NiS2/g-C3N4 photocatalyst showed the highest H2 evolution rate(116.343 μmol h^-1 g^-1),which is significantly higher than that of the pure g-C3N4(3 μmol h^-1 g^-1).Moreover,the results of a recycling test for the NiS2/g-C3N4(3 wt%)sample showed that this sample could maintain a stable and effective photocatalytic H2-evolution performance under visible-light irradiation.Based on the above results,a possible mechanism of the improved photocatalytic performance was proposed for the presented NiS2/g-C3N4 photocatalysts,in which the photogenerated electrons of g-C3N4 can be rapidly transferred to the NiS2 nanoparticles via the close and continuous contact between them;then,the photogenerated electrons rapidly react with H2O adsorbed on the surface of NiS2,which has a surficial metallic character and high catalytic activity,to produce H2.Considering the mild and facile synthesis method,the presented low-cost and highly efficient NiS2-modified g-C3N4 photocatalysts would have great potential for practical use in photocatalytic H2 production. 展开更多
关键词 Photocatalysis NiS2 Graphite-like carbon-nitride COCATALYST Visible-light photocatalytic hydrogen EVOLUTION
下载PDF
Enhanced visible light photocatalytic H_2 production over Z-scheme g-C_3N_4 nansheets/WO_3 nanorods nanocomposites loaded with Ni(OH)_x cocatalysts 被引量:8
11
作者 何科林 谢君 +5 位作者 罗杏宜 温九青 马松 李鑫 方岳平 张向超 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期240-252,共13页
Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ... Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications. 展开更多
关键词 Photocatalytic hydrogen evolution Robust Ni(OH)x cocatalyst g-C3N4 Z-Scheme systems Heterojunction
下载PDF
Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi_2WO_6 被引量:9
12
作者 袁博 张宝 +4 位作者 王志亮 卢胜梅 李军 刘龑 李灿 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期440-446,共7页
The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists becau... The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst. 展开更多
关键词 Flower-like Bi_2WO_6 Toluene oxidation BENZALDEHYDE COCATALYST Palladium nanoparticle
下载PDF
The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen 被引量:12
13
作者 Nan Xiao Songsong Li +3 位作者 Xuli Li Lei Ge Yangqin Gao Ning Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第4期642-671,共30页
Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renew... Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested. 展开更多
关键词 COCATALYSTS Photocatalytsts Hydrogen evolution Charge separation Water splitting
下载PDF
Highly efficient visible-light photocatalytic H2 evolution over 2D–2D Cd S/Cu7S4 layered heterojunctions 被引量:13
14
作者 Doudou Ren Rongchen Shen +2 位作者 Zhimin Jiang Xinyong Lu Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期31-40,共10页
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan... Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs. 展开更多
关键词 Visible-light photocatalytic H2 evolution CdS nanosheet Cu7S4 cocatalysts Layered heterojunction Charge separation
下载PDF
Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production 被引量:9
15
作者 Yajie Wang Yao Li +1 位作者 Shaowen Cao Jiaguo Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期867-874,共8页
Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction.Herein,Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitri... Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction.Herein,Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitride through a chemical plating method and serve as highly efficient and stable cocatalyst toward photocatalytic proton reduction.An effective role in promoting the charge separation and migration of the photocatalytic system is demonstrated for Ni-P clusters,which essentially enhance the photocatalytic H2-production rate to a value of 1506μmol h^–1 g^–1.This performance is comparable to that of the benchmark of Pt-modified carbon nitride.This work highlights that the Ni-P alloy could be a potential alternative to noble metal cocatalyst in the photocatalytic reactions. 展开更多
关键词 PHOTOCATALYSIS Hydrogen production Cocatalyst Ni-P alloy Charge transfer
下载PDF
A review on tungsten-trioxide-based photoanodes for water oxidation 被引量:7
16
作者 Jingwei Huang Pengfei Yue +2 位作者 Lei Wang Houde She Qizhao Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1408-1420,共13页
Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydr... Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydrogen at the photocathode of a PEC cell,the photoanode,where the oxygen evolution reaction occurs,should be systematically developed on priority.In particular,WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position.Its practical implementation,however,is still limited by excessive electron–hole recombination and poor water oxidation kinetics.This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3,such as controlling the morphology,introducing defects,constructing a heterojunction,loading a cocatalyst,and exploiting the plasmonic effect.In addition,the possible future research directions are presented. 展开更多
关键词 WO3 photoanode Water splitting Defect HETEROJUNCTION COCATALYST
下载PDF
Ni-based photocatalytic H_2-production cocatalysts 被引量:9
17
作者 Rongchen Shen Jun Xie +3 位作者 Quanjun Xiang Xiaobo Chen Jizhou Jiang Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期240-288,共49页
Photocatalysis is believed to be one of the best methods to realize sustainable H2 production. However, achieving this through heterogeneous photocatalysis still remains a great challenge owing to the absence of activ... Photocatalysis is believed to be one of the best methods to realize sustainable H2 production. However, achieving this through heterogeneous photocatalysis still remains a great challenge owing to the absence of active sites, sluggish surface reaction kinetics, insufficient charge separation, and a high thermodynamic barrier. Therefore, cocatalysts are necessary and of great significance in boosting photocatalytic H2 generation. This review will focus on the promising and appealing low-cost Ni-based H2-generation cocatalysts as the alternatives for the high-cost and low-abundance noble metal cocatalysts. Special emphasis has been placed on the design principle, modification strategies for further enhancing the activity and stability of Ni-based cocatalysts, and identification of the exact active sites and surface reaction mechanisms. Particularly, four types of modification strategies based on increased light harvesting, enhanced charge separation, strengthened interface interaction, and improved electrocatalytic activity have been thoroughly discussed and compared in detail. This review may open a new avenue for designing highly active and durable Ni-based cocatalysts for photocatalytic H2 generation. 展开更多
关键词 Heterogeneous photocatalysts Ni-based cocatalysts Photocatalytic H2 generation Solar fuel Heterojunctions
下载PDF
Integrating non-precious-metal cocatalyst Ni_3N with g-C_3N_4 for enhanced photocatalytic H_2 production in water under visible-light irradiation 被引量:7
18
作者 Jianhua Ge Yujie Liu +2 位作者 Daochuan Jiang Lei Zhang Pingwu Du 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第2期160-167,共8页
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years.In this study,noble-metal-free Ni3N was used as an active cocatalyst to enhance... Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years.In this study,noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation(λ>420 nm).The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4,which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation.The hydrogen evolution rate reached^305.4μmol h^-1 g^-1,which is about three times higher than that of pristine g-C3N4,and the apparent quantum yield(AQY)was^0.45%atλ=420.Furthermore,the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate,even after five cycles under visible-light irradiation.Finally,a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed. 展开更多
关键词 PHOTOCATALYSIS Ni3N COCATALYST Hydrogen evolution g-C3N4
下载PDF
Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution 被引量:10
19
作者 Rongchen Shen Yingna Ding +4 位作者 Shibang Li Peng Zhang Quanjun Xiang Yun Hau Ng Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期25-36,共12页
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts... The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems. 展开更多
关键词 Photocatalytic H2 evolution Zn0.5Cd0.5S solid solution Twin nanocrystal Heterojunction/homojunction Earth-abundant Ni3C cocatalysts
下载PDF
MgO and Au nanoparticle Co-modified g-C_(3)N_(4)photocatalysts for enhanced photoreduction of CO_(2)with H_(2)O 被引量:5
20
作者 Naixu Li Meiyou Huang +2 位作者 Jiancheng Zhou Maochang Liu Dengwei Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期781-794,共14页
The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photo... The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction. 展开更多
关键词 CO2 photoreduction MGO Au g-C3N4 Photocatalysis Synergistic effect COCATALYST
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部