Biomass has become of recent interest as a raw material for‘green’graphenic carbon(GC)since it promotes an environmentally friendly approach.Here,we investigate a single pyrolysis route to synthesize GC from coconut...Biomass has become of recent interest as a raw material for‘green’graphenic carbon(GC)since it promotes an environmentally friendly approach.Here,we investigate a single pyrolysis route to synthesize GC from coconut shells which provides a simple method and can produce a high yield,thus being convenient for large-scale pro-duction.The pyrolysis involves a stepped holding process at 350℃ for 1 h and at 650℃ or 900℃ for 3 h.The GC sample resulted at the 900℃ pyrolysis has a thinner sheet,a less porous structure,a higher C/O ratio,and an enhanced electrical conductivity than those pyrolyzed at 650℃.The addition of Na3PO4 catalyst has no signifi-cant effects on the GC structures obtained by this route.The single pyrolysis route generates thinner GC sheets compared to the two-step heat treatment followed by the liquid phase exfoliation(LPE)procedure.Nevertheless,the latter method offers a formation of clean samples with a porous or holey feature which has potential for advanced energy-storage applications.展开更多
This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experi...This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).展开更多
The study is focused on the phenomenon of diffusion of water through the shells of two coconut species (coconut nucifera) of Cameroun. The kinetics absorption of water was studied experimentally by the gravimetric met...The study is focused on the phenomenon of diffusion of water through the shells of two coconut species (coconut nucifera) of Cameroun. The kinetics absorption of water was studied experimentally by the gravimetric method with discontinuous control of the mass of the samples at the temperature of 23℃. The mature coconut shells were cleaned mechanically, cut in a spherical shape and placed in a drying oven with 105℃ for 4 hours before being plunged in distilled water at 23℃. This study made it possible not only to determine the rate of water absorbed, but also to model the water kinetic absorption of the shells. Of the two models tested (Peleg and Page), the Page model predicted very well the experimental data. The Fick law made it possible to evaluate the effective diffusivity coefficients at the initial and final phases of absorption. The effective diffusivity coefficient was given from the Arrhenius equation.展开更多
An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and ...An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects.展开更多
In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construc...In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.展开更多
Catalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is at the heart of key renewable energy technologies such as water splitting and rechargeable batteries. But developing a low-cost ...Catalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is at the heart of key renewable energy technologies such as water splitting and rechargeable batteries. But developing a low-cost oxygen electrode catalyst with high activity at low overpotential remains a great challenge. Coconut shells can be utilized as suitable raw material to produce activated carbon for enhanced adsorption capacity, bulk density, and hardness to be used as regenerative fuel cells running ORR and OER. The present work is designed to obtain an alternative to noble metal-based catalysts by synthesizing electroactive N-doped porous carbon from coconut shells;the use of biodegradable raw material through a single-step activation followed by nitrogen doping provides a more economical and environmentally friendly route to produce green catalysts for fuel cell applications. In valorization of biomass for the development of novel catalytic materials, our aim is also to reduce the use of hazardous chemicals. N-doped activated carbon shows promising bifunctional catalyst for ORR and OER as low-cost noble-metal-free and carbon-based oxygen catalysts.展开更多
In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tro...In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tron microscope(SEM),Fourier Transform Infrared(FTIR),C,H,N,S analyzer,and BET surface area analyzer.The parameters examined include agitation time,initial concentration of Bi(Ⅲ),adsorbent dose and temperature.The maximum adsorption of Bi(Ⅲ)(98.72%) was observed at 250 mg·L-1 of Bi(Ⅲ) and adsorbent dose of 0.7 g when agitation was at 160 r·min-1 for 240 min at(299±2) K.The thermodynamic parameters such as Gibb's free energy(△Gθ),enthalpy(△Hθ) and entropy(△Sθ) were evaluated.For the isotherm models applied to adsorption study,the Langmuir isotherm model fits better than the Freundlich isotherm.The maximum adsorption capacity from the Langmuir isotherm was 54.35 mg?g?1 of Bi(Ⅲ).The kinetic study of the adsorption shows that the pseudo second order model is more appropriate than the pseudo first order model.The result shows that,coconut shell ac-tivated carbon is an effective adsorbent to remove Bi(Ⅲ) from aqueous solutions with good adsorption capacity.展开更多
[Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, ...[Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.展开更多
To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut sh...To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.展开更多
To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstru...To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.展开更多
Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that a...Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that are hydrolyzed to simple sugars, which allows the subsequent fermentation to obtain bioproducts, such as ethanol. In this work, response surface methodology (RSM) was employed to optimize the culture conditions on unexpensive substrate for MnP secretion by Trametes villosa. Three independent variables were evaluated (i.e., temperature, moisture content and pH). The crude extract containing MnP was used in the delignification experiment and it caused a reduction in lignin content for all residues tested: 35.05 ± 1.45 (%) for the sugar cane bagasse;63.11 ± 0.06 (%) for the sisal fiber and 39.61 ± 0.39 (%) for the coconut shell, under the reaction conditions tested after 4 hours of fermentation. The preliminary results exhibited the potential application of this enzyme in the removal of lignin from plant residues. However, the conditions should be evaluated and optimized for each residue type.展开更多
This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as...This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as supporting material was modified by moderate oxidant of H_(2)O_(2)with different concentrations,and then sta-bilized stearic acid(SA)to prepare composite PCMs through vacuum impregnation.It found that CSC support causes a 15.70%improvement of SA loadage after treated by 15%H_(2)O_(2)due to coefficient enhancement by phys-ical interaction and surface modification.The modified CSC 15 support appears more super macropores which contribute to the impregnation of SA than non-modified CSC 0 support verifying from SEM and BET results.And the content of oxygen functional groups was increased after oxidation modification,also motivating SA stabiliza-tion by hydrogen bond interaction in XPS analysis.FTIR results proved there is no chemical reaction happened between SA and CSC.Moreover,the latent heat and phase transition temperature of the as-prepared SA/CSC 15 composite are 76.69 J g^(−1)and 52.52℃,respectively.All composites exhibit excellent thermal stability under a working temperature of 180℃and form stability during phase change.Thermal energy storage-release test within 70℃presents the composite has fast heat transfer efficiency than pure SA.The composite filled in TSWH system has 0.75 W m^(−1)K^(−1)thermal conductivity which is 2.88 times higher than that of pure SA(0.26 W m^(−1)K−1).Besides,the TSWH system with a flow rate of 0.004 kg s^(−1)could heat water effectively after sunset and the energy obtained from the thermal storage system within 1830 s testing times is about 0.15 kW h.In all,SA/CSC composite with good physical-thermo properties has potential in thermal energy storage application,especially in solar energy storage.展开更多
For years, biochar has been successfully used for the remediation of polycyclic aromatic hydrocarbons(PAHs) in contaminated soils, not only for improving their removal from soil but also for reducing their uptake by c...For years, biochar has been successfully used for the remediation of polycyclic aromatic hydrocarbons(PAHs) in contaminated soils, not only for improving their removal from soil but also for reducing their uptake by crops. However, the underlying mechanism of biochar application reducing PAH uptake and accumulation in winter wheat remains unclear. Pot trials were conducted on a PAH-contaminated soil amended with bamboo biochar, coconut shell biochar,and maize straw biochar(MSB) for an entire growth period of winter wheat. Compared with no biochar control(CK), application of the three types of biochar significantly(P < 0.01) reduced grain PAH concentration, total equivalent concentration(TEC), and incremental lifetime cancer risk(ILCR), indicating that biochar application, especially MSB, reduced the risk of exposure to PAHs in wheat grain. Furthermore, all three types of biochar significantly(P < 0.05)reduced PAH uptake and accumulation in wheat roots and stems, probably because biochar application enhanced the degradation of PAHs in the rhizosphere soil. Compared with CK, application of the three types of biochar significantly(P < 0.05) reduced the concentration of PAHs in the rhizosphere soil by15.9%–33.7%. It was found that the degradation rate of high-molecular-weight(HMW) PAHs(5-and 6-ring PAHs) was significantly(P < 0.05) higher than that of low-molecular-weight(LMW) PAHs(2–4-ring PAHs) regardless of the type of biochar used. Additionally, all three types of biochar significantly increased the relative abundance of the dominant bacterial phyla and genera in soil. Redundancy and correlation analyses also showed that there was a strong correlation between the removal rate of PAHs and dominant bacteria in the rhizosphere soil. This study indicated that biochar effectively reduced the health risk from dietary exposure to PAHs in wheat grains by increasing the abundance of bacteria related to PAH degradation, promoting the biodegradation of PAHs in the rhizosphere soil, and consequently reducing PAH uptake by wheat.展开更多
基金This work is funded by the Matching Fund Kedaireka Program Based on the Decision Letter No.15/E1/PPK/KS.03.00/2023 dated 26 April 2023the Cooperation Agreement No.114/E1/HK.02.02/2023.
文摘Biomass has become of recent interest as a raw material for‘green’graphenic carbon(GC)since it promotes an environmentally friendly approach.Here,we investigate a single pyrolysis route to synthesize GC from coconut shells which provides a simple method and can produce a high yield,thus being convenient for large-scale pro-duction.The pyrolysis involves a stepped holding process at 350℃ for 1 h and at 650℃ or 900℃ for 3 h.The GC sample resulted at the 900℃ pyrolysis has a thinner sheet,a less porous structure,a higher C/O ratio,and an enhanced electrical conductivity than those pyrolyzed at 650℃.The addition of Na3PO4 catalyst has no signifi-cant effects on the GC structures obtained by this route.The single pyrolysis route generates thinner GC sheets compared to the two-step heat treatment followed by the liquid phase exfoliation(LPE)procedure.Nevertheless,the latter method offers a formation of clean samples with a porous or holey feature which has potential for advanced energy-storage applications.
文摘This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).
文摘The study is focused on the phenomenon of diffusion of water through the shells of two coconut species (coconut nucifera) of Cameroun. The kinetics absorption of water was studied experimentally by the gravimetric method with discontinuous control of the mass of the samples at the temperature of 23℃. The mature coconut shells were cleaned mechanically, cut in a spherical shape and placed in a drying oven with 105℃ for 4 hours before being plunged in distilled water at 23℃. This study made it possible not only to determine the rate of water absorbed, but also to model the water kinetic absorption of the shells. Of the two models tested (Peleg and Page), the Page model predicted very well the experimental data. The Fick law made it possible to evaluate the effective diffusivity coefficients at the initial and final phases of absorption. The effective diffusivity coefficient was given from the Arrhenius equation.
基金supported by“Hibah Penelitian Dasar Kompetitif Nasional”,Ministry of Education,Culture,Research and Technology,Indonesia,2021–2022(D).The use of the synchrotron XPES facility at SLRI(Public Organization),Thailand,and some experimental facilities at UNIMAP and UPM,Malaysia,would also be appreciated.
文摘An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects.
文摘In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.
文摘Catalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is at the heart of key renewable energy technologies such as water splitting and rechargeable batteries. But developing a low-cost oxygen electrode catalyst with high activity at low overpotential remains a great challenge. Coconut shells can be utilized as suitable raw material to produce activated carbon for enhanced adsorption capacity, bulk density, and hardness to be used as regenerative fuel cells running ORR and OER. The present work is designed to obtain an alternative to noble metal-based catalysts by synthesizing electroactive N-doped porous carbon from coconut shells;the use of biodegradable raw material through a single-step activation followed by nitrogen doping provides a more economical and environmentally friendly route to produce green catalysts for fuel cell applications. In valorization of biomass for the development of novel catalytic materials, our aim is also to reduce the use of hazardous chemicals. N-doped activated carbon shows promising bifunctional catalyst for ORR and OER as low-cost noble-metal-free and carbon-based oxygen catalysts.
文摘In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tron microscope(SEM),Fourier Transform Infrared(FTIR),C,H,N,S analyzer,and BET surface area analyzer.The parameters examined include agitation time,initial concentration of Bi(Ⅲ),adsorbent dose and temperature.The maximum adsorption of Bi(Ⅲ)(98.72%) was observed at 250 mg·L-1 of Bi(Ⅲ) and adsorbent dose of 0.7 g when agitation was at 160 r·min-1 for 240 min at(299±2) K.The thermodynamic parameters such as Gibb's free energy(△Gθ),enthalpy(△Hθ) and entropy(△Sθ) were evaluated.For the isotherm models applied to adsorption study,the Langmuir isotherm model fits better than the Freundlich isotherm.The maximum adsorption capacity from the Langmuir isotherm was 54.35 mg?g?1 of Bi(Ⅲ).The kinetic study of the adsorption shows that the pseudo second order model is more appropriate than the pseudo first order model.The result shows that,coconut shell ac-tivated carbon is an effective adsorbent to remove Bi(Ⅲ) from aqueous solutions with good adsorption capacity.
基金Supported by National Forestry Bureau Public Service Industry (201004051)China Forestry Science Institution Central Public Service Science and Research Academy Fundamental Research Operation Feed(CAFINT2009K02)
文摘[Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.
基金Funded by the General Project of Science and Technology Plan of Yunnan Science and Technology Department(Nos.202001AT070029,2019FB077)Open Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab-20-4)。
文摘To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.
基金Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)+1 种基金Industrialization Cultivation Project of Scientific Research Fund of Yunnan Provincial Department of Education,China(No.2016CYH07)Top Young Talents of Yunnan Ten Thousand Talents Plan,China(No.YNWR-QNBJ-2019-263)。
文摘To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.
文摘Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that are hydrolyzed to simple sugars, which allows the subsequent fermentation to obtain bioproducts, such as ethanol. In this work, response surface methodology (RSM) was employed to optimize the culture conditions on unexpensive substrate for MnP secretion by Trametes villosa. Three independent variables were evaluated (i.e., temperature, moisture content and pH). The crude extract containing MnP was used in the delignification experiment and it caused a reduction in lignin content for all residues tested: 35.05 ± 1.45 (%) for the sugar cane bagasse;63.11 ± 0.06 (%) for the sisal fiber and 39.61 ± 0.39 (%) for the coconut shell, under the reaction conditions tested after 4 hours of fermentation. The preliminary results exhibited the potential application of this enzyme in the removal of lignin from plant residues. However, the conditions should be evaluated and optimized for each residue type.
基金This work was supported by the National Natural Science Founda-tion of China(51874047,51504041)the Training Program for Excel-lent Young Innovators of Changsha(kq1802007)+2 种基金the Fund for Univer-sity Young Core Instructors of Hunan Provincethe Outstanding Youth Project of Hunan Provincial Department of Education(18B148)and the Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid.
文摘This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as supporting material was modified by moderate oxidant of H_(2)O_(2)with different concentrations,and then sta-bilized stearic acid(SA)to prepare composite PCMs through vacuum impregnation.It found that CSC support causes a 15.70%improvement of SA loadage after treated by 15%H_(2)O_(2)due to coefficient enhancement by phys-ical interaction and surface modification.The modified CSC 15 support appears more super macropores which contribute to the impregnation of SA than non-modified CSC 0 support verifying from SEM and BET results.And the content of oxygen functional groups was increased after oxidation modification,also motivating SA stabiliza-tion by hydrogen bond interaction in XPS analysis.FTIR results proved there is no chemical reaction happened between SA and CSC.Moreover,the latent heat and phase transition temperature of the as-prepared SA/CSC 15 composite are 76.69 J g^(−1)and 52.52℃,respectively.All composites exhibit excellent thermal stability under a working temperature of 180℃and form stability during phase change.Thermal energy storage-release test within 70℃presents the composite has fast heat transfer efficiency than pure SA.The composite filled in TSWH system has 0.75 W m^(−1)K^(−1)thermal conductivity which is 2.88 times higher than that of pure SA(0.26 W m^(−1)K−1).Besides,the TSWH system with a flow rate of 0.004 kg s^(−1)could heat water effectively after sunset and the energy obtained from the thermal storage system within 1830 s testing times is about 0.15 kW h.In all,SA/CSC composite with good physical-thermo properties has potential in thermal energy storage application,especially in solar energy storage.
基金financially supported by the National Natural Science Foundation of China (Nos. 42077325 and 41571456)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JZ-25)。
文摘For years, biochar has been successfully used for the remediation of polycyclic aromatic hydrocarbons(PAHs) in contaminated soils, not only for improving their removal from soil but also for reducing their uptake by crops. However, the underlying mechanism of biochar application reducing PAH uptake and accumulation in winter wheat remains unclear. Pot trials were conducted on a PAH-contaminated soil amended with bamboo biochar, coconut shell biochar,and maize straw biochar(MSB) for an entire growth period of winter wheat. Compared with no biochar control(CK), application of the three types of biochar significantly(P < 0.01) reduced grain PAH concentration, total equivalent concentration(TEC), and incremental lifetime cancer risk(ILCR), indicating that biochar application, especially MSB, reduced the risk of exposure to PAHs in wheat grain. Furthermore, all three types of biochar significantly(P < 0.05)reduced PAH uptake and accumulation in wheat roots and stems, probably because biochar application enhanced the degradation of PAHs in the rhizosphere soil. Compared with CK, application of the three types of biochar significantly(P < 0.05) reduced the concentration of PAHs in the rhizosphere soil by15.9%–33.7%. It was found that the degradation rate of high-molecular-weight(HMW) PAHs(5-and 6-ring PAHs) was significantly(P < 0.05) higher than that of low-molecular-weight(LMW) PAHs(2–4-ring PAHs) regardless of the type of biochar used. Additionally, all three types of biochar significantly increased the relative abundance of the dominant bacterial phyla and genera in soil. Redundancy and correlation analyses also showed that there was a strong correlation between the removal rate of PAHs and dominant bacteria in the rhizosphere soil. This study indicated that biochar effectively reduced the health risk from dietary exposure to PAHs in wheat grains by increasing the abundance of bacteria related to PAH degradation, promoting the biodegradation of PAHs in the rhizosphere soil, and consequently reducing PAH uptake by wheat.