Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main facto...Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main factors that affect the cladding performance during normal or off-normal operation, which induces force interaction between the pellet and cladding. In the case of a normal operation period, to estimate the cladding stress and strain, various models and codes have been developed using a simplified 1D (one-dimensional) assumption. However, in the case of a slow ramp during start-up and shut-down and a fast transient such as an AOO (anticipated operational occurrence), it is difficult for a 1D model to simulate the cladding stress and strain accurately due to its modeling limitation. To model a large deformation along the radial and axial directions such as a "'ballooning" phenomenon, FE (finite element) modeling, which can simulate a higher degree of freedom, is an indispensable requirement. In this work, an axisymmetric two-dimensional FE module, which will be integrated into the transient fuel performance code, has been developed. To solve the mechanical equilibrium of the pellet-cladding system, taking into account the geometrical and material non-linearities, the FE module employs an ESF (effective-stress-function) algorithm. Verifications of the FE module for the cases of thermal and elastic analyes were performed using the results of ANSYS 13.0.展开更多
In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as...In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as cladding material mainly due to its lower neutron absorption cross section. Now, stainless steel cladding appears as a possible solution for safety problems related to hydrogen production and explosion as occurred in Fukushima Daiichi accident. The aim of this paper is to discuss the steady-state irradiation performance using stainless steel as cladding. The results show that stainless steel rods display higher fuel temperatures and wider pellet-cladding gaps than Zircaloy rods and no gap closure. The thermal performance of the two rods is very similar and the neutron absorption penalty due to stainless steel use could be compensating by combining small increase in U-235 enrichment and pitch size changes.展开更多
文摘Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main factors that affect the cladding performance during normal or off-normal operation, which induces force interaction between the pellet and cladding. In the case of a normal operation period, to estimate the cladding stress and strain, various models and codes have been developed using a simplified 1D (one-dimensional) assumption. However, in the case of a slow ramp during start-up and shut-down and a fast transient such as an AOO (anticipated operational occurrence), it is difficult for a 1D model to simulate the cladding stress and strain accurately due to its modeling limitation. To model a large deformation along the radial and axial directions such as a "'ballooning" phenomenon, FE (finite element) modeling, which can simulate a higher degree of freedom, is an indispensable requirement. In this work, an axisymmetric two-dimensional FE module, which will be integrated into the transient fuel performance code, has been developed. To solve the mechanical equilibrium of the pellet-cladding system, taking into account the geometrical and material non-linearities, the FE module employs an ESF (effective-stress-function) algorithm. Verifications of the FE module for the cases of thermal and elastic analyes were performed using the results of ANSYS 13.0.
文摘In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as cladding material mainly due to its lower neutron absorption cross section. Now, stainless steel cladding appears as a possible solution for safety problems related to hydrogen production and explosion as occurred in Fukushima Daiichi accident. The aim of this paper is to discuss the steady-state irradiation performance using stainless steel as cladding. The results show that stainless steel rods display higher fuel temperatures and wider pellet-cladding gaps than Zircaloy rods and no gap closure. The thermal performance of the two rods is very similar and the neutron absorption penalty due to stainless steel use could be compensating by combining small increase in U-235 enrichment and pitch size changes.