In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic fou...In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic foundation beam.Decoupling the coupled motion equation and using Duhamel's integrals,the solutions in generalized coordinates of the equations under exponentially decaying loads,square wave loads and triangular wave loads are calculated.These solutions are consistent in form with the solutions of single-degree-of-freedom(SDoF) undamped forced vibration simplified model.Based on the model,equivalent MDoF design method(also called MDoF dynamic coefficient method) of cylindrical explosion vessel is proposed.The traditional method can only predict the dynamic coefficient of torus portion around the explosion center,but this method can predict that of the vessel wall at any axial n dividing point position.It is verified that the prediction accuracy of this model is greatly improved compared with the SDoF model by comparing the results of this model with SDoF model and numerical simulation in different working conditions.However,the prediction accuracy decreases as the scaled distance decreases and approaches the end of the vessel,which is related to the accuracy of the empirical formula of the implosion load,the simplification of the explosion load direction,the boundary conditions,and the loading time difference.展开更多
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
基金supported by grants from the Department of Infrastructure Barracks and National Science-Technology Support Plan(Grants No.BY209J033 and 2012BAK05B01)。
文摘In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic foundation beam.Decoupling the coupled motion equation and using Duhamel's integrals,the solutions in generalized coordinates of the equations under exponentially decaying loads,square wave loads and triangular wave loads are calculated.These solutions are consistent in form with the solutions of single-degree-of-freedom(SDoF) undamped forced vibration simplified model.Based on the model,equivalent MDoF design method(also called MDoF dynamic coefficient method) of cylindrical explosion vessel is proposed.The traditional method can only predict the dynamic coefficient of torus portion around the explosion center,but this method can predict that of the vessel wall at any axial n dividing point position.It is verified that the prediction accuracy of this model is greatly improved compared with the SDoF model by comparing the results of this model with SDoF model and numerical simulation in different working conditions.However,the prediction accuracy decreases as the scaled distance decreases and approaches the end of the vessel,which is related to the accuracy of the empirical formula of the implosion load,the simplification of the explosion load direction,the boundary conditions,and the loading time difference.