Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil ...Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.展开更多
Air injection is a good option to development light oil reservoir.As well-known that,reservoir heterogeneity has great effect for various EOR processes.This also applies to air injection.However,oil recovery mechanism...Air injection is a good option to development light oil reservoir.As well-known that,reservoir heterogeneity has great effect for various EOR processes.This also applies to air injection.However,oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood.The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media.In practice,reservoir heterogeneity follows the principle of geostatistics.How much of contrast in permeability actually challenges the air injection in light oil reservoir?This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style.Unfortunately,there has been no work addressing this issue for air injection in light oil reservoir.In this paper,Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method.The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach.The basic model is calibrated based on previous study.Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme.Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location,which is against the working behavior of air injection from updip location.Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection.High O2 content air injection can benefit oil recovery factor,also lead to early O2 breakthrough in heterogeneous reservoir.Well-type does not show great effect on production performance for air injection in extreme heterogeneous reservoir.While adopting horizontal producer is favourable to promote production performance for air injection in homogenous reservoir.展开更多
基金supported by the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(52104061)+2 种基金the project funded by China Postdoctoral Science Foundation(2020M682264)the Shandong Provincial Natural Science Foundation(ZR2021QE075)the Fundamental Research Funds for the Central Universities(20CX06090A)。
文摘Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.
基金This work is supported by the fund of National Science Foundation of China(Award No.51404202)Sichuan Youth Science and Technology Fund(Award No.2015JQ0038)PetroChina Innovation Foundation(Award No.2017D-5007-0202).
文摘Air injection is a good option to development light oil reservoir.As well-known that,reservoir heterogeneity has great effect for various EOR processes.This also applies to air injection.However,oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood.The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media.In practice,reservoir heterogeneity follows the principle of geostatistics.How much of contrast in permeability actually challenges the air injection in light oil reservoir?This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style.Unfortunately,there has been no work addressing this issue for air injection in light oil reservoir.In this paper,Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method.The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach.The basic model is calibrated based on previous study.Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme.Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location,which is against the working behavior of air injection from updip location.Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection.High O2 content air injection can benefit oil recovery factor,also lead to early O2 breakthrough in heterogeneous reservoir.Well-type does not show great effect on production performance for air injection in extreme heterogeneous reservoir.While adopting horizontal producer is favourable to promote production performance for air injection in homogenous reservoir.