This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can co...This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analy...Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected an...Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.展开更多
Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of ana...Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients(distinct type of events), which contains information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of commercial aluminum alloy LY12 in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results show that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot(EDP) can be used as "fingerprints" of EN signals and can be very useful for analyzing EN data in the future.展开更多
This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Tra...This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).展开更多
A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery ...A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.展开更多
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c...Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
It is an important step in the online monitoring of partial discharge (PD) to extract PD pulses from various background noises. An adaptive de-noising method is introduced for adaptive noise reduction during detection...It is an important step in the online monitoring of partial discharge (PD) to extract PD pulses from various background noises. An adaptive de-noising method is introduced for adaptive noise reduction during detection of PD pulses. This method is based on Wavelet Transform (WT), and in the wavelet domain the noises decomposed at the levels are reduced by independent thresholds. Instead of the standard hard thresholding function, a new type of hard thresholding function with continuous derivative is employed by this method. For the selection of thresholds, an unsupervised learning algorithm based on gradient in a mean square error (MSE) is present to search for the optimal threshold for noise reduction, and the optimal threshold is selected when the minimum MSE is obtained. With the simulating signals and on-site experimental data processed by this method, it is shown that the background noises such as narrowband noises can be reduced efficiently. Furthermore, it is proved that in comparison with the conventional wavelet de-noising method the adaptive de-noising method has a better performance in keeping the pulses and is more adaptive when suppressing the background noises of PD signals.展开更多
Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
The primary purpose of this paper is to provide a novel wavelet-domain method for digital radiography with low dose examination. Approach of this study is an improved wavelet-transform-based method for potentially red...The primary purpose of this paper is to provide a novel wavelet-domain method for digital radiography with low dose examination. Approach of this study is an improved wavelet-transform-based method for potentially reducing radiation dose while maintaining clinically acceptable image quality. The wavelet algorithm integrates the advantages of wavelet-coefficient-weighted method and the existing Bayes Shrink thresholding method. In order to confirm the usefulness of the proposed method, the resolving and noise characteristics of the processed computed radiography images were measured. In addition, variations of contrast and noise with respect to radiation dose were also examined. Finally, to verify the effect of clinical examination, visual evaluations were also performed in lower abdominal area using phantom. Our quantitative results demonstrated that our wavelet algorithm could improve resolution characteristics while keeping the noise level within acceptable limits. Visual evaluation result demonstrated that the proposed method was superior to other published methods. Our proposed method recognized effect on decreasing in exposure dose in lower abdominal radiographs. As a conclusion, our proposed method’s performance is better when compared with that of the 3 conventional methods. The proposed method has the potential to improve visibility in radiographs when a lower radiation dose is applied.展开更多
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi...Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.展开更多
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a...The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.展开更多
Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing ...Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing the difficulty of the feature extraction.Thereby,a novel denoising method based on the tunable Q-factor wavelet transform(TQWT)using neighboring coefficients is proposed in this article.The emerging TQWT possesses excellent properties compared with the conventional constant-Q wavelet transforms,which can tune Q-factor according to the oscillatory behavior of the signal.Meanwhile,neighboring coefficients denoising is adopted to avoid the overkill of conventional term-by-term thresholding techniques.Because of having the combined advantages of the two methods,the presented denoising method is more practical and effective than other methods.The proposed method is applied to a simulated signal,a rolling element bearing with an outer race defect from antenna transmission chain and a gearbox fault detection case.The processing results demonstrate that the proposed method can successfully identify the fault features,showing that this method is more effective than the conventional wavelet thresholding denoising methods,term-by-term TQWT denoising schemes and spectral kurtosis.展开更多
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most pr...In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.展开更多
文摘This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金the financial support of the National Key Basic Research Foundation of China (Project G19990650), the National Natural Science Foundation of China (Project 50071054) and the financial support of State Key
文摘Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
文摘Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.
文摘Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients(distinct type of events), which contains information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of commercial aluminum alloy LY12 in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results show that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot(EDP) can be used as "fingerprints" of EN signals and can be very useful for analyzing EN data in the future.
文摘This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).
基金Supported by the Education Foundation of Anhui Province (No.2002kj003)
文摘A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.
基金supported by China Petrochemical key project during the 11th Five-year Plan as well as the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
文摘It is an important step in the online monitoring of partial discharge (PD) to extract PD pulses from various background noises. An adaptive de-noising method is introduced for adaptive noise reduction during detection of PD pulses. This method is based on Wavelet Transform (WT), and in the wavelet domain the noises decomposed at the levels are reduced by independent thresholds. Instead of the standard hard thresholding function, a new type of hard thresholding function with continuous derivative is employed by this method. For the selection of thresholds, an unsupervised learning algorithm based on gradient in a mean square error (MSE) is present to search for the optimal threshold for noise reduction, and the optimal threshold is selected when the minimum MSE is obtained. With the simulating signals and on-site experimental data processed by this method, it is shown that the background noises such as narrowband noises can be reduced efficiently. Furthermore, it is proved that in comparison with the conventional wavelet de-noising method the adaptive de-noising method has a better performance in keeping the pulses and is more adaptive when suppressing the background noises of PD signals.
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
文摘The primary purpose of this paper is to provide a novel wavelet-domain method for digital radiography with low dose examination. Approach of this study is an improved wavelet-transform-based method for potentially reducing radiation dose while maintaining clinically acceptable image quality. The wavelet algorithm integrates the advantages of wavelet-coefficient-weighted method and the existing Bayes Shrink thresholding method. In order to confirm the usefulness of the proposed method, the resolving and noise characteristics of the processed computed radiography images were measured. In addition, variations of contrast and noise with respect to radiation dose were also examined. Finally, to verify the effect of clinical examination, visual evaluations were also performed in lower abdominal area using phantom. Our quantitative results demonstrated that our wavelet algorithm could improve resolution characteristics while keeping the noise level within acceptable limits. Visual evaluation result demonstrated that the proposed method was superior to other published methods. Our proposed method recognized effect on decreasing in exposure dose in lower abdominal radiographs. As a conclusion, our proposed method’s performance is better when compared with that of the 3 conventional methods. The proposed method has the potential to improve visibility in radiographs when a lower radiation dose is applied.
文摘Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.
文摘The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.
基金supported by the National Natural Science Foundation of China (Grant No. 51275384)the Key Project of National Natural Science Foundation of China (Grant No. 51035007)+1 种基金the Important National Science and Technology Specific Projects (Grant No. 2010ZX04014-016)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB724405)
文摘Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing the difficulty of the feature extraction.Thereby,a novel denoising method based on the tunable Q-factor wavelet transform(TQWT)using neighboring coefficients is proposed in this article.The emerging TQWT possesses excellent properties compared with the conventional constant-Q wavelet transforms,which can tune Q-factor according to the oscillatory behavior of the signal.Meanwhile,neighboring coefficients denoising is adopted to avoid the overkill of conventional term-by-term thresholding techniques.Because of having the combined advantages of the two methods,the presented denoising method is more practical and effective than other methods.The proposed method is applied to a simulated signal,a rolling element bearing with an outer race defect from antenna transmission chain and a gearbox fault detection case.The processing results demonstrate that the proposed method can successfully identify the fault features,showing that this method is more effective than the conventional wavelet thresholding denoising methods,term-by-term TQWT denoising schemes and spectral kurtosis.
基金Foundation item: National Natural Science Foundation of China(No.60372072)
文摘In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.