The work is to present the energetic nature of the rigidity. It starts with the definition by introducing the notion of sensual magnitudes with the pyramidal structure of all surrounding magnitudes known by a human be...The work is to present the energetic nature of the rigidity. It starts with the definition by introducing the notion of sensual magnitudes with the pyramidal structure of all surrounding magnitudes known by a human being. Next the selection of the subject is provided in view of a smooth categorization of magnitudes describing the reality. The adequate description of the considered mechanical phenomenon is presented by formulating general stiffness characteristics. There are several characteristics analyzed, both functional and parametric. An essential, quite a new one is the characteristic of stiffness energy measure which is the stiffness potential. The proper and gained stiffness potentials situated on stable and unstable potential fields have been analyzed. An example of using of this theory to practice is given. It has been referred to a cylindrical grinder case. The presented theory allowed describing the entire stiffness characteristics, including its initial very essential course which has been usually, though inequitably, extrapolated by a straight line segment coming out of zero point with zero coordinates.展开更多
文摘The work is to present the energetic nature of the rigidity. It starts with the definition by introducing the notion of sensual magnitudes with the pyramidal structure of all surrounding magnitudes known by a human being. Next the selection of the subject is provided in view of a smooth categorization of magnitudes describing the reality. The adequate description of the considered mechanical phenomenon is presented by formulating general stiffness characteristics. There are several characteristics analyzed, both functional and parametric. An essential, quite a new one is the characteristic of stiffness energy measure which is the stiffness potential. The proper and gained stiffness potentials situated on stable and unstable potential fields have been analyzed. An example of using of this theory to practice is given. It has been referred to a cylindrical grinder case. The presented theory allowed describing the entire stiffness characteristics, including its initial very essential course which has been usually, though inequitably, extrapolated by a straight line segment coming out of zero point with zero coordinates.