期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D Printing of Polylactic Acid Bioplastic–Carbon Fibres and Twisted Kevlar Composites Through Coextrusion Using Fused Deposition Modeling 被引量:2
1
作者 J.Y.Tey W.H.Yeo +1 位作者 Y.J.King W.O.Ding 《Journal of Renewable Materials》 SCIE EI 2020年第12期1671-1680,共10页
Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechan... Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechanical properties which reduced its usability as a functional prototype in a real-world application.In the present study,two PLA composites are created through coextruded with 3K carbon fibres and twisted Kevlar string(as core fibre)to form a fibre reinforced parts(FRP).The mechanical strength of printed parts was examined using ASTM D638 standard with a strain rate of 1 mm/min.It has been demonstrated that the FRPs coextruded with 3K carbon fibres had achieved significant improvement in Young’s modulus(+180.6%,9.205 GPa),ultimate tensile strength(+175.3%,103 MPa)and maximum tensile strain(+21.6%,1.833%).Although the Young’s modulus of Kevlar FRP was found to be similar to as compared to unreinforced PLA(~3.29 GPa),it has gained significant increment in terms of maximum tensile strain(+179.7%,104.64 MPa),and maximum tensile strain(+257%,5.384%).Thus,this study revealed two unique composite materials,in which the 3K carbon FRP can offer stiff and high strength structure while Kevlar FRP offers similar strength but at a higher elasticity. 展开更多
关键词 3D printing Kevlar fibre 3K carbon fibre coextruded reinforced plastic polylactic acid bioplastic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部