The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e...This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste...Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.展开更多
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fr...The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.展开更多
In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In ...In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In this study, some rooms interchange electric power and heat with each other for high efficiency and reduction of energy loss. The authors determine an operation schedule of FCs by multi-evaluation from viewpoints of energy cost and CO2 emissions.展开更多
Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environmen...Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environment and on specific biological components in the lake ecosystem. Change in biogenic load has caused an increase in the role of phytoplankton in the general balance of organic matter during the high-water period. Charophytes are the main dominants of bottom vegetation. Anthropogenic load has caused a decrease in both fish species and fish capacity. The lake application as a water reservoir-cooler has influenced the average annual water mineralization (from 420 mg/L to 530.0 mg/L with a maximum 654 mg/L in 1993) and fluctuations in its hydrochemical composition. The present composition of the lake is sulfate-hydrocarbonate-chloride calcium-sodic-magnesium in character. S(Y44 content is twice as much as the maximum permissible concentration in fishery waters. Water drainage from an ash disposal area to the lake has caused an increase in chemical-element concentrations including the heavy metals. Hg concentration in Perca fluviatilis muscles is 0.5 9g/g dry wt. Thus, understanding directions in the ecosystem of the water reservoir-cooler under changing hydrological conditions will let us forecast the consequences of new combined heat and power plant operation.展开更多
Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as...Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.展开更多
An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric lo...An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption.展开更多
Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recover...Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recovery of flue gas and jacket water heat is essential.In a conventional internal combustion engine-based steam and power cogeneration system,the low-temperature(less than 170°C)heat from flue gas and jacket water is usually directly discharged to the environment,which dramatically reduces the thermal and economic performance.In this work,a high-temperature heat pump is employed to recover this part of low-temperature heat for steam generation.The sensible heat of the flue gas and jacket water is cascade utilized in a steam generator and a heat pump.Simulation results show that the process steam yield of the proposed system is almost doubled(increased by 703 kg/h)compared to that of an engine-based cogeneration system without a heat pump.The proposed system can reduce natural gas consumption,C 02 and NOx emissions by approximately 199069 m3,372.64 tons and 3.02 tons per year,respectively,with a primary energy ratio and exergy efficiency of 72.52%and 46.28%,respectively.Moreover,the proposed system has a lower payback period with a value of 5.11 years,and the determining factors that affect the payback period are natural gas and electricity prices.The total net present value of the proposed system within its lifespan is 2441581 USD,and an extra profit of 785748 USD can be obtained compared to the reference system.This is a promising approach for replacing gas boilers for process steam production in industrial sectors.展开更多
为考核微型燃料电池热-电联供系统的热量利用程度,采集了一年中日本某家庭使用的1 k W质子交换膜燃料电池(PEMFC)的微型热-电联产系统各单元的数据,进行统计与分析,从热量利用的角度,计算各单元热量输入输出效率。结果表明,储热水箱散...为考核微型燃料电池热-电联供系统的热量利用程度,采集了一年中日本某家庭使用的1 k W质子交换膜燃料电池(PEMFC)的微型热-电联产系统各单元的数据,进行统计与分析,从热量利用的角度,计算各单元热量输入输出效率。结果表明,储热水箱散热与输运管道散热是系统热损失较多的薄弱环节。相关统计与分析,对改进类似热-电联产系统,进一步提高能源综合利用效率具有参考意义。展开更多
From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy managem...From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified.展开更多
A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of ...A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.展开更多
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
文摘This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
文摘Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.
文摘The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
文摘In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In this study, some rooms interchange electric power and heat with each other for high efficiency and reduction of energy loss. The authors determine an operation schedule of FCs by multi-evaluation from viewpoints of energy cost and CO2 emissions.
基金Supported by the RFBR No.14-05-98013"Siberia"(2014–2016)the Project of SB of the RAS VIII.79.1.2."Dynamics of natural and natural-anthropogenic systems in the conditions of climate change and anthropogenic pressures(on the example of Transbaikalia)"(2012–2017)
文摘Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environment and on specific biological components in the lake ecosystem. Change in biogenic load has caused an increase in the role of phytoplankton in the general balance of organic matter during the high-water period. Charophytes are the main dominants of bottom vegetation. Anthropogenic load has caused a decrease in both fish species and fish capacity. The lake application as a water reservoir-cooler has influenced the average annual water mineralization (from 420 mg/L to 530.0 mg/L with a maximum 654 mg/L in 1993) and fluctuations in its hydrochemical composition. The present composition of the lake is sulfate-hydrocarbonate-chloride calcium-sodic-magnesium in character. S(Y44 content is twice as much as the maximum permissible concentration in fishery waters. Water drainage from an ash disposal area to the lake has caused an increase in chemical-element concentrations including the heavy metals. Hg concentration in Perca fluviatilis muscles is 0.5 9g/g dry wt. Thus, understanding directions in the ecosystem of the water reservoir-cooler under changing hydrological conditions will let us forecast the consequences of new combined heat and power plant operation.
文摘Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.
基金supported by the National Key Research and Development Program of China under Grant 2017YFB0902100.
文摘An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFF0201503).
文摘Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recovery of flue gas and jacket water heat is essential.In a conventional internal combustion engine-based steam and power cogeneration system,the low-temperature(less than 170°C)heat from flue gas and jacket water is usually directly discharged to the environment,which dramatically reduces the thermal and economic performance.In this work,a high-temperature heat pump is employed to recover this part of low-temperature heat for steam generation.The sensible heat of the flue gas and jacket water is cascade utilized in a steam generator and a heat pump.Simulation results show that the process steam yield of the proposed system is almost doubled(increased by 703 kg/h)compared to that of an engine-based cogeneration system without a heat pump.The proposed system can reduce natural gas consumption,C 02 and NOx emissions by approximately 199069 m3,372.64 tons and 3.02 tons per year,respectively,with a primary energy ratio and exergy efficiency of 72.52%and 46.28%,respectively.Moreover,the proposed system has a lower payback period with a value of 5.11 years,and the determining factors that affect the payback period are natural gas and electricity prices.The total net present value of the proposed system within its lifespan is 2441581 USD,and an extra profit of 785748 USD can be obtained compared to the reference system.This is a promising approach for replacing gas boilers for process steam production in industrial sectors.
文摘为考核微型燃料电池热-电联供系统的热量利用程度,采集了一年中日本某家庭使用的1 k W质子交换膜燃料电池(PEMFC)的微型热-电联产系统各单元的数据,进行统计与分析,从热量利用的角度,计算各单元热量输入输出效率。结果表明,储热水箱散热与输运管道散热是系统热损失较多的薄弱环节。相关统计与分析,对改进类似热-电联产系统,进一步提高能源综合利用效率具有参考意义。
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA052001)the Fundamental Research Funds for the Central Universities(No.2015ZD02)
文摘From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified.
文摘A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.