The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference ...The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference alignment( IA) algorithm based on cognitive MIMO networks is proposed in this paper. The algorithm is realized by designing two-level pre-coding, the first-level precoding aligns the interference generated by the cognitive users( CUs) to unused sub-channels of the primary user( PU),thereby eliminating the interference of CUs to PU; the second-level precoding is used to improve the throughput of CUs. Simulation shows that the proposed IA algorithm can eliminate the interference that the CUs produce on the PU and improve the throughput of CUs spontaneously.展开更多
The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-S...The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.展开更多
To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the cl...To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.展开更多
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12ZZ126)the Program of Shanghai Normal University,China(No.DZL126)
文摘The cognitive multiple input multiple output( MIMO)network can utilize radio spectrum efficiently and satisfy the demand of high data rate. In order to decrease the interference during transmission,a new interference alignment( IA) algorithm based on cognitive MIMO networks is proposed in this paper. The algorithm is realized by designing two-level pre-coding, the first-level precoding aligns the interference generated by the cognitive users( CUs) to unused sub-channels of the primary user( PU),thereby eliminating the interference of CUs to PU; the second-level precoding is used to improve the throughput of CUs. Simulation shows that the proposed IA algorithm can eliminate the interference that the CUs produce on the PU and improve the throughput of CUs spontaneously.
基金the National Nature Science Foundation of China under Grant No.61271259 and 61301123,the Chongqing Nature Science Foundation under Grant No.CTSC2011jjA40006,and the Research Project of Chongqing Education Commission under Grant No.KJ120501 and KJ120502
文摘The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.
文摘To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.