To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources i...To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.展开更多
A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary...A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.展开更多
The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, wh...The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, which is envisioned as the"Internet of Things" (IoT). Since a huge number of heterogeneous resources are brought in- to IoT, one of the main challenges is how to effi- ciently manage the increasing complexity of IoT in a scalable, flexNle, and autonomic way. Further- more, the emerging IoT applications will require collaborations among loosely coupled devices, which may reside in various locations of the Inter- net. In this paper, we propose a new IoT network management architecture based on cognitive net- work management technology and Service-Orien- ted Architecture to provide effective and efficient network management of loT.展开更多
The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-S...The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.展开更多
The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard...The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.展开更多
In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocol...In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.展开更多
During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cogni...During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cognition(LMDC),and to provide a theoretical basis for further study in cooperative multi-domain cognition and initiative multi-domain cognition,the LMDC is investigated in this paper.A Local Single-Domain Cognitive(LSDC)approach is first proposed based on multidimensional edge detection theory.This approach can divide the parameter space that describes the single-domain environment into different areas,and can represent each area with an identifier.Using this as a foundation,the single-domain environment is extended to multi-domain environments,and an LMDC approach is presented to describe the LMDC environment.The paper concludes by introducing two examples and the corresponding analysis to illustrate the feasibility of the proposed LMDC approach.展开更多
Resource reservation is an effective measure to ensure end-to-end quality of service (QoS), however, the burstyness of the traffic makes the reservation idle some time, and forms a waste of re- sources. Based on the...Resource reservation is an effective measure to ensure end-to-end quality of service (QoS), however, the burstyness of the traffic makes the reservation idle some time, and forms a waste of re- sources. Based on the analysis of active queue management (AQM) of DiffServ network, we propose a resource management scheme, which allows borrowing resources from unused reservation, accord- ing to the characteristics and advantages of cognitive networks. First, some nodes reserve certain proportion capacity for some special services (for instance, some services pay additional money) to guarantee the priority of these applications. Then resources are assigned according to the different parameters of services. If the available resource can not meet the requirements of new services, real- time ones are admitted with higher priority and allow borrowing the unused reservation from other nodes appropriately. Simulations show that, the proposed scheme has good performance at network resource utilization, the admission rate of new aDolications and OoS of users.展开更多
Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-base...Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-based Channel Assignment(SCA).In this algorithm,the system was modeled with a conflict graph,and users cannot assign the channels that primary users(legacy users) and neighbors already occupied.In order to eliminate the conflicts between neighbors efficiently,secondary users(unlicensed users) try to transfer them through a straight path to the boundary,where conflicts are easier to solve as there are less neighbors for boundary users.Actions in one shift are executed in slots,and users act in a synchronous and separated manner.As a result,some of the conflicting channels are avoid from directly abandoned,and for this,utility of the entire network can be improved.Simulation results show that the proposed algorithm can provide similar utility performance while obviously reducing the communication cost than bargaining-base algorithms.In small scale networks with low user mobility(under 20%),it reduces 50% of the communication overhead than the later.展开更多
This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and cl...This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and classified using an intelligent service-aware classification model. Drawing on Control Theory, network traffic can be controlled with a self-adaptive QoS control mechanism that has side-road collaboration. In this architecture, perception, analysis, correlation, feedback, decision making, allocation, and implementation QoS mechanisms are created automatically. These mechanisms can adjust resource allocation, adapt to a changeable network environment, optimize end-to-end performance of the network, and ensure QoS.展开更多
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
In past decades,cellular networks have raised the usage of spectrum resources due to the victory of mobile broadband services.Mobile devices create massive data than ever before,facing the way cellular networks are in...In past decades,cellular networks have raised the usage of spectrum resources due to the victory of mobile broadband services.Mobile devices create massive data than ever before,facing the way cellular networks are installed pre-sently for satisfying the increased traffic requirements.The development of a new exclusive spectrum offered to meet up the traffic requirements is challenging as spectrum resources are limited,hence costly.Cognitive radio technology is pre-sented to increase the pool of existing spectrum resources for mobile users via Femtocells,placed on the top of the available macrocell network for sharing the same spectrum.Nevertheless,the concurrent reuse of spectrum resources from Femto networks poses destructive interference on macro networks.To resolve this issue,this paper introduces an optimal channel allocation model using the Oppo-sitional Beetle Swarm Optimization Algorithm(OBSOA)to allocate the channel with interference avoidance.A new OBSOA is derived in this paper by the inclu-sion of opposition-based learning(OBL)in BSOA.This algorithm allocates the channels used by PUs(PUs)to the secondary users(SUs)in such a way that inter-ference is minimized.This proposed approach is implemented in the MATrix LABoratory(MATLAB)platform.The performance of this proposed approach is evaluated in terms of several measures and the experimental outcome verified the superior nature of the OBSOA-based channel allocation model.OBSOA mod-el has resulted in a maximum signal-to-interference-plus-noise ratio value of 86.42 dB.展开更多
To cover remote areas where terrestrial cellular networks may not be available,non-terrestrial infrastructures such as satellites and unmanned aerial vehicles(UAVs)can be utilized in the upcoming sixth-generation(6G)e...To cover remote areas where terrestrial cellular networks may not be available,non-terrestrial infrastructures such as satellites and unmanned aerial vehicles(UAVs)can be utilized in the upcoming sixth-generation(6G)era.Considering the spectrum scarcity problem,satellites and UAVs need to share the spectrum to save costs,leading to a cognitive satellite-UAV network.Due to the openness of both satellite links and UAV links,communication security has become a major concern in cognitive satelliteUAV networks.In this paper,we safeguard a cognitive satellite-UAV network from a physical layer security(PLS)perspective.Using only the slowlyvarying large-scale channel state information(CSI),we jointly allocate the transmission power and subchannels to maximize the secrecy sum rate of UAV users.The optimization problem is a mixed integer nonlinear programming(MINLP)problem with coupling constraints.We propose a heuristic algorithm which relaxes the coupling constraints by the penalty method and obtains a sub-optimal low-complexity solution by utilizing random matrix theory,the max-min optimization tool,and the bipartite graph matching algorithm.The simulation results corroborate the superiority of our proposed scheme.展开更多
Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum...Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum.In order to maximize SU’s utility,SU may transmit its own information during the period of cooperative transmission,which stimulates the use of covert transmission against PU’s monitoring.For this sake,this article reviews the motivations of studying covert communications in CCRN.In particular,three intelligent covert transmission approaches are developed for maximizing SU’s utility in CCRNs,namely,intelligent parasitic covert transmission(IPCT),intelligent jammer aided covert transmission(IJCT)and intelligent reflecting surface assisted covert transmission(IRSC).Further,some raw performance evaluations are discussed,and a range of potential research directions are also provided.展开更多
This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice...This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.展开更多
Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient co...Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.展开更多
Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper propose...Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper proposes a robust BF scheme to improve the spectrum and energy harvesting efficiencies for the IRS-aided simultaneous wireless information and power transfer(SWIPT)in a cognitive radio network(CRN).Here,the base station(BS)utilizes spectrum assigned to the primary users(PUs)to simultaneously serve multiple energy receivers(ERs)and information receivers(IRs)through IRS-aided multicast technology.In particular,by assuming that only the imperfect channel state information(CSI)is available,we first formulate a constrained problem to maximize the minimal achievable rate of IRs,while satisfying the harvesting energy threshold of ERs,the quality-of-service requirement of IRs,the interference threshold of PUs and transmit power budget of BS.To address the non-convex problem,we then adopt triangle inequality to deal with the channel uncertainty,and propose a low-complexity algorithm combining alternating direction method of multipliers(ADMM)with alternating optimi-zation(AO)to jointly optimize the active and passive beamformers for the BS and IRS,respectively.Finally,our simulation results confirm the effectiveness of the proposed BF scheme and also provide useful insights into the importance of introducing IRS into the CRN with SWIPT.展开更多
Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom...Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.展开更多
With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the syst...With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.展开更多
基金the National Natural Science Foundation of China(Grant No.61971057).
文摘To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.
基金The National Natural Science Foundation of China (No.60972026)the Natural Science Foundation of Jiangsu Province (No.BK2008289)Specialized Research Fund for the Doctoral Program ofHigher Education (No.20090092110009)
文摘A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.
基金supported by the National Sci.&Tech. Major Project of China(No.2010ZX03004-002)the National Natural Science Foundation of China(No.60972083)
文摘The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, which is envisioned as the"Internet of Things" (IoT). Since a huge number of heterogeneous resources are brought in- to IoT, one of the main challenges is how to effi- ciently manage the increasing complexity of IoT in a scalable, flexNle, and autonomic way. Further- more, the emerging IoT applications will require collaborations among loosely coupled devices, which may reside in various locations of the Inter- net. In this paper, we propose a new IoT network management architecture based on cognitive net- work management technology and Service-Orien- ted Architecture to provide effective and efficient network management of loT.
基金the National Nature Science Foundation of China under Grant No.61271259 and 61301123,the Chongqing Nature Science Foundation under Grant No.CTSC2011jjA40006,and the Research Project of Chongqing Education Commission under Grant No.KJ120501 and KJ120502
文摘The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.
基金Project(61673399)supported by the National Natural Science Foundation of ChinaProject(2017JJ2329)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018zzts550)supported by the Fundamental Research Funds for Central Universities,China
文摘The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.
基金supported by the 2016 research fund of University of Ulsan
文摘In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No. 61231008the National Natural Science Foundation of China under Grant No. 61072068the program for Cheung Kong Scholars and Innovative Research Team in University under Grant IRT0852
文摘During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cognition(LMDC),and to provide a theoretical basis for further study in cooperative multi-domain cognition and initiative multi-domain cognition,the LMDC is investigated in this paper.A Local Single-Domain Cognitive(LSDC)approach is first proposed based on multidimensional edge detection theory.This approach can divide the parameter space that describes the single-domain environment into different areas,and can represent each area with an identifier.Using this as a foundation,the single-domain environment is extended to multi-domain environments,and an LMDC approach is presented to describe the LMDC environment.The paper concludes by introducing two examples and the corresponding analysis to illustrate the feasibility of the proposed LMDC approach.
基金Supported by the High Technology Research and Development Program of China(No.2009AA01Z211)the Fundamental Research Funds for Central Universities of China(No.2009YJS034)+1 种基金Beijing Nature Science Foundation of China(No.4112044)the Research Fund for the Doctoral Program of Higer Education of China(No.20120009110009)
文摘Resource reservation is an effective measure to ensure end-to-end quality of service (QoS), however, the burstyness of the traffic makes the reservation idle some time, and forms a waste of re- sources. Based on the analysis of active queue management (AQM) of DiffServ network, we propose a resource management scheme, which allows borrowing resources from unused reservation, accord- ing to the characteristics and advantages of cognitive networks. First, some nodes reserve certain proportion capacity for some special services (for instance, some services pay additional money) to guarantee the priority of these applications. Then resources are assigned according to the different parameters of services. If the available resource can not meet the requirements of new services, real- time ones are admitted with higher priority and allow borrowing the unused reservation from other nodes appropriately. Simulations show that, the proposed scheme has good performance at network resource utilization, the admission rate of new aDolications and OoS of users.
基金Supported by the National Natural Science Foundation of China (No. 60832007)the National Hi-Tech Research and Development Plan of China (No. 2009AA011801)
文摘Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-based Channel Assignment(SCA).In this algorithm,the system was modeled with a conflict graph,and users cannot assign the channels that primary users(legacy users) and neighbors already occupied.In order to eliminate the conflicts between neighbors efficiently,secondary users(unlicensed users) try to transfer them through a straight path to the boundary,where conflicts are easier to solve as there are less neighbors for boundary users.Actions in one shift are executed in slots,and users act in a synchronous and separated manner.As a result,some of the conflicting channels are avoid from directly abandoned,and for this,utility of the entire network can be improved.Simulation results show that the proposed algorithm can provide similar utility performance while obviously reducing the communication cost than bargaining-base algorithms.In small scale networks with low user mobility(under 20%),it reduces 50% of the communication overhead than the later.
基金funded by the National High Technology Research and Development Planning ("863"Project) under Grant No. 2006AA01Z232, 2009AA01Z212, 2009AA01Z202the National Natural Science Foundation Project under Grant No. 61003237
文摘This paper analyzes a self-adaptive Quality of Service (QoS) control architecture for cognitive networks (CNs) that is based on intelligent service awareness. In this architecture, packets can be identified and classified using an intelligent service-aware classification model. Drawing on Control Theory, network traffic can be controlled with a self-adaptive QoS control mechanism that has side-road collaboration. In this architecture, perception, analysis, correlation, feedback, decision making, allocation, and implementation QoS mechanisms are created automatically. These mechanisms can adjust resource allocation, adapt to a changeable network environment, optimize end-to-end performance of the network, and ensure QoS.
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
文摘In past decades,cellular networks have raised the usage of spectrum resources due to the victory of mobile broadband services.Mobile devices create massive data than ever before,facing the way cellular networks are installed pre-sently for satisfying the increased traffic requirements.The development of a new exclusive spectrum offered to meet up the traffic requirements is challenging as spectrum resources are limited,hence costly.Cognitive radio technology is pre-sented to increase the pool of existing spectrum resources for mobile users via Femtocells,placed on the top of the available macrocell network for sharing the same spectrum.Nevertheless,the concurrent reuse of spectrum resources from Femto networks poses destructive interference on macro networks.To resolve this issue,this paper introduces an optimal channel allocation model using the Oppo-sitional Beetle Swarm Optimization Algorithm(OBSOA)to allocate the channel with interference avoidance.A new OBSOA is derived in this paper by the inclu-sion of opposition-based learning(OBL)in BSOA.This algorithm allocates the channels used by PUs(PUs)to the secondary users(SUs)in such a way that inter-ference is minimized.This proposed approach is implemented in the MATrix LABoratory(MATLAB)platform.The performance of this proposed approach is evaluated in terms of several measures and the experimental outcome verified the superior nature of the OBSOA-based channel allocation model.OBSOA mod-el has resulted in a maximum signal-to-interference-plus-noise ratio value of 86.42 dB.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant U22A2002 and Grant 61922049。
文摘To cover remote areas where terrestrial cellular networks may not be available,non-terrestrial infrastructures such as satellites and unmanned aerial vehicles(UAVs)can be utilized in the upcoming sixth-generation(6G)era.Considering the spectrum scarcity problem,satellites and UAVs need to share the spectrum to save costs,leading to a cognitive satellite-UAV network.Due to the openness of both satellite links and UAV links,communication security has become a major concern in cognitive satelliteUAV networks.In this paper,we safeguard a cognitive satellite-UAV network from a physical layer security(PLS)perspective.Using only the slowlyvarying large-scale channel state information(CSI),we jointly allocate the transmission power and subchannels to maximize the secrecy sum rate of UAV users.The optimization problem is a mixed integer nonlinear programming(MINLP)problem with coupling constraints.We propose a heuristic algorithm which relaxes the coupling constraints by the penalty method and obtains a sub-optimal low-complexity solution by utilizing random matrix theory,the max-min optimization tool,and the bipartite graph matching algorithm.The simulation results corroborate the superiority of our proposed scheme.
基金supported by the National Natural Science Foundation of China under Grant 61825104, in part by the National Natural Science Foundation of China under Grants 61801518, 62201582in part by the National Key R&D Program of China under Grant 2022YFC3301300+3 种基金in part by the Key Research and Development Program of Shaanxi under Grant 2022KW-03in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210111in part by the Natural Science Basic Research Program of Shaanxi under Grant 2022JQ-632in part by Innovative Cultivation Project of School of Information and Communication of National University of Defense Technology under Grant YJKT-ZD-2202
文摘Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum.In order to maximize SU’s utility,SU may transmit its own information during the period of cooperative transmission,which stimulates the use of covert transmission against PU’s monitoring.For this sake,this article reviews the motivations of studying covert communications in CCRN.In particular,three intelligent covert transmission approaches are developed for maximizing SU’s utility in CCRNs,namely,intelligent parasitic covert transmission(IPCT),intelligent jammer aided covert transmission(IJCT)and intelligent reflecting surface assisted covert transmission(IRSC).Further,some raw performance evaluations are discussed,and a range of potential research directions are also provided.
基金supported by the National Natural Science Foundation of China(No.62201606 and No.62071486)the Project of Science and Technology Planning of Guizhou Province(No.[2020]-030)+3 种基金the Project of Science and Technology Fund of Guizhou Provincial Health Commission(gzwkj2022524)the Project of Youth Science and Technology Talent Growth Guizhou Provincial Department of Education(No.KY[2021]230)the Key Research Base Project of Humanities and Social Sciences of Education Department of Guizhou Provincethe Project of Science and Technology Planning of Zunyi City(No.2022-381 and No.2022-384)。
文摘This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.
文摘Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.
基金supported in part by the Key International Cooper-ation Research Project under Grant 61720106003in part by NUPTSF under Grant NY220111+1 种基金in part by NUPTSF under Grant NY221009in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX22_0959.
文摘Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper proposes a robust BF scheme to improve the spectrum and energy harvesting efficiencies for the IRS-aided simultaneous wireless information and power transfer(SWIPT)in a cognitive radio network(CRN).Here,the base station(BS)utilizes spectrum assigned to the primary users(PUs)to simultaneously serve multiple energy receivers(ERs)and information receivers(IRs)through IRS-aided multicast technology.In particular,by assuming that only the imperfect channel state information(CSI)is available,we first formulate a constrained problem to maximize the minimal achievable rate of IRs,while satisfying the harvesting energy threshold of ERs,the quality-of-service requirement of IRs,the interference threshold of PUs and transmit power budget of BS.To address the non-convex problem,we then adopt triangle inequality to deal with the channel uncertainty,and propose a low-complexity algorithm combining alternating direction method of multipliers(ADMM)with alternating optimi-zation(AO)to jointly optimize the active and passive beamformers for the BS and IRS,respectively.Finally,our simulation results confirm the effectiveness of the proposed BF scheme and also provide useful insights into the importance of introducing IRS into the CRN with SWIPT.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:14-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by the Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.
文摘With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.