Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spe...Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spectrum access makes the CIoV unable to adapt to the various spectrum environments.In this paper,a reinforcement learning based dynamic spectrum access scheme is proposed to improve the transmission performance of the CIoV in the licensed spectrum,and avoid causing harmful interference to the PU.The frame structure of the CIoV is separated into sensing period and access period,whereby the CIoV can optimize the transmission parameters in the access period according to the spectrum decisions in the sensing period.Considering both detection probability and false alarm probability,a Q-learning based spectrum access algorithm is proposed for the CIoV to intelligently select the optimal channel,bandwidth and transmit power under the dynamic spectrum states and various spectrum sensing performance.The simulations have shown that compared with the traditional non-learning spectrum access algorithm,the proposed Q-learning algorithm can effectively improve the spectral efficiency and throughput of the CIoV as well as decrease the interference power to the PU.展开更多
A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with t...A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.展开更多
Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional d...Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional driving has been developed in this paper. Problems of digital driving error classification, digital driving error probability quantification and digital driving reliability simulation have been addressed using a comparison re- search method. Simulation results show that driving reliability analysis discussed here is capable of identifying digital driving behavior characteristics and achieving safety assessment of intelligent transportation system.展开更多
Vision cues play an important role in states feedback in motion control.However,the existing driver steering models consider little about vision cues utilized by human drivers during their steering procedure.This pape...Vision cues play an important role in states feedback in motion control.However,the existing driver steering models consider little about vision cues utilized by human drivers during their steering procedure.This paper presents a novel steering control strategy based on two preview points(far point and near point).The far point is used to compensate the steering wheel by predicting the upcoming curvature change with respect to the lane,while the near point as vision feedback,which is used to tune the steering wheel by estimating the errors of vehicle states and lane center.To obtain much smoother lateral acceleration during steering,a forward internal model is established using a second-order yaw dynamics system that captures the influence of yaw angular acceleration caused by steering wheel angle.The input parameter of the second-order system is the vision cues of both the near and far points,and the output parameters are the ideal yaw angle and yaw rate.To calculate suitable the steering wheel angle,an adaptive controller is designed using fuzzy sliding technology,which is used as the input of the vehicle system dynamics.Numerical simulation results show that the proposed method performs better than the existing driver steering models in case of imitating human drivers' behavior,and exhibits excellent adaption to the lane curvature change.展开更多
基金This work was supported by the Joint Foundations of the National Natural Science Foundations of China and the Civil Aviation of China under Grant U1833102the Natural Science Foundation of Liaoning Province under Grants 2020-HYLH-13 and 2019-ZD-0014+1 种基金the fundamental research funds for the central universities under Grant DUT21JC20the Engineering Research Center of Mobile Communications,Ministry of Education.
文摘Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spectrum access makes the CIoV unable to adapt to the various spectrum environments.In this paper,a reinforcement learning based dynamic spectrum access scheme is proposed to improve the transmission performance of the CIoV in the licensed spectrum,and avoid causing harmful interference to the PU.The frame structure of the CIoV is separated into sensing period and access period,whereby the CIoV can optimize the transmission parameters in the access period according to the spectrum decisions in the sensing period.Considering both detection probability and false alarm probability,a Q-learning based spectrum access algorithm is proposed for the CIoV to intelligently select the optimal channel,bandwidth and transmit power under the dynamic spectrum states and various spectrum sensing performance.The simulations have shown that compared with the traditional non-learning spectrum access algorithm,the proposed Q-learning algorithm can effectively improve the spectral efficiency and throughput of the CIoV as well as decrease the interference power to the PU.
基金supported by the Key International Cooperation Research Project(61720106003)the National Natural Science Foundation of China(62001517)+2 种基金the Shanghai Aerospace Science and Technology Innovation Foundation(SAST2019-095)the NUPTSF(NY220111)the Foundational Research Project of Complex Electronic System Simulation Laboratory(DXZT-JC-ZZ-2019-009,DXZTJC-ZZ-2019-005).
文摘A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.
基金Sponsored by the National Natural Science Foundation of China(50878023)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional driving has been developed in this paper. Problems of digital driving error classification, digital driving error probability quantification and digital driving reliability simulation have been addressed using a comparison re- search method. Simulation results show that driving reliability analysis discussed here is capable of identifying digital driving behavior characteristics and achieving safety assessment of intelligent transportation system.
基金supported by the China Postdoctoral Science Foundation(Grant No. 2011M500917)the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1101153C)
文摘Vision cues play an important role in states feedback in motion control.However,the existing driver steering models consider little about vision cues utilized by human drivers during their steering procedure.This paper presents a novel steering control strategy based on two preview points(far point and near point).The far point is used to compensate the steering wheel by predicting the upcoming curvature change with respect to the lane,while the near point as vision feedback,which is used to tune the steering wheel by estimating the errors of vehicle states and lane center.To obtain much smoother lateral acceleration during steering,a forward internal model is established using a second-order yaw dynamics system that captures the influence of yaw angular acceleration caused by steering wheel angle.The input parameter of the second-order system is the vision cues of both the near and far points,and the output parameters are the ideal yaw angle and yaw rate.To calculate suitable the steering wheel angle,an adaptive controller is designed using fuzzy sliding technology,which is used as the input of the vehicle system dynamics.Numerical simulation results show that the proposed method performs better than the existing driver steering models in case of imitating human drivers' behavior,and exhibits excellent adaption to the lane curvature change.