In this letter,an Opportunistic Interference Cancellation(OIC) is first introduced as a rate control strategy for secondary user in cognitive wireless networks. Based on the OIC rate control method,an optimal power co...In this letter,an Opportunistic Interference Cancellation(OIC) is first introduced as a rate control strategy for secondary user in cognitive wireless networks. Based on the OIC rate control method,an optimal power control strategy for multichannel cognitive wireless networks is proposed. The algorithm aims to maximize the total transmit rate of cognitive user through appropriately controlling the transmit power of each subchannel under the constraint that the interference temperature at the primary receiver is below a certain threshold. Three suboptimal power control methods,namely Equal Power Transmission(EPT) ,Equal Rate Transmission(ERT) and Equal Interference Transmission(EIT) ,are also proposed. The performances of the proposed power control methods are compared through numerical simulations.展开更多
Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom...Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.展开更多
This paper studies the problem of effective resource allocation for multi-radio access technologies (Multi-RAT) nodes in heterogeneous cognitive wireless networks (HCWNs). End-to-end utility, which is defined as t...This paper studies the problem of effective resource allocation for multi-radio access technologies (Multi-RAT) nodes in heterogeneous cognitive wireless networks (HCWNs). End-to-end utility, which is defined as the delay of end-to-end communication, is taken into account in this paper. In the scenario of HCWNs, it is assumed that the cognitive radio nodes have the ability of Multi-RAT and can communicate with each other through different paths simultaneously by splitting the arrival packets. In this paper, the problem is formulated as the optimization of split ratio and power allocation of the source cognitive radio node to minimize the delay of end-to-end communication, and a low complexity step-by-step iterative algorithm is proposed. Numerical results show good performance of the proposed algorithm over two other conventional algorithms.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
In order to improve the Energy Efficiency(EE)and spectrum utilization of Cognitive Wireless Powered Networks(CWPNs),a combined spatial-temporal Energy Harvesting(EH)and relay selection scheme is proposed.In the propos...In order to improve the Energy Efficiency(EE)and spectrum utilization of Cognitive Wireless Powered Networks(CWPNs),a combined spatial-temporal Energy Harvesting(EH)and relay selection scheme is proposed.In the proposed scheme,for protecting the Primary User(PU),a two-layer guard zone is set outside the PU based on the outage probability threshold of the PU.Moreover,to increase the energy of the CWPNs,the EH zone in the two-layer guard zone allows the Secondary Users(SUs)to spatially harvest energy from the Radio Frequency(RF)signals of temporally active PUs.To improve the utilization of the PU spectrum,the guard zone outside the EH zone allows for the constrained power transmission of SUs.Moreover,the relay selection transmission is designed in the transmission zone of the SU to improve the EE of the CWPNs.In addition to the EE of the CWPNs,the outage probabilities of the SU and PU are derived.The results reveal that the setting of a two-layer guard zone can effectively reduce the outage probability of the PU and improve the EE of CWPNs.Furthermore,the relay selection transmission decreases the outage probabilities of the SUs.展开更多
Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networ...Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.展开更多
IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physic...IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC), utilizig the vacant spectrum bands already allocated to broadcast TV without interference.. The WRAN employs CR technologies to sense and estimate the television signals and use the technologies of dynamic spectrum management to find and then allocate vacant spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue, WRANs and IEEE 802.22, CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.展开更多
IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physi...IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC),to use the already allocated fallow spectrums to broadcast TV in a non-interference way. The WRAN employs CR technologies to sense and estimate the television frequencies and use the technologies of dynamic spectrum management to find and then allocate idle spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue,WRANs and IEEE 802.22,CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.展开更多
In order to enhance the efficiency of spectrum utilization and reduce communication overhead in spectrum sharing process, we propose a two-stage dynamic spectrum sharing scheme in which cooperative and noncooperative ...In order to enhance the efficiency of spectrum utilization and reduce communication overhead in spectrum sharing process, we propose a two-stage dynamic spectrum sharing scheme in which cooperative and noncooperative modes are analyzed in both stages. In particular, the existence and the uniqueness of Nash Equilibrium(NE) strategies for noncooperative mode are proved. In addition, a distributed iterative algorithm is proposed to obtain the optimal solutions of the scheme. Simulation studies are carried out to show the performance comparison between two modes as well as the system revenue improvement of the proposed scheme compared with a conventional scheme without a virtual price control factor.展开更多
In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper propose...In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper proposes a joint random detection strategy using the idle cognitive users in cognitive wireless networks.After adding idle cognitive users for detection,the compressed sensing model is employed to describe the number of available channels obtained by the cognitive base station to derive the detection performance of the cognitive network at this time.Both theoretical analysis and simulation results show that using idle cognitive users can reduce service delay and improve the throughput of cognitive networks.After considering the time occupied by cognitive users to report detection information,the optimal participation number of idle cognitive users in joint detection is obtained through the optimization algorithm.展开更多
The End-to-End Reconfigurability (E2R) project aims at realizing the convergence of the heterogeneous radio networks and the optimal utilization of the radio resources. With the continuous development of E2R technolog...The End-to-End Reconfigurability (E2R) project aims at realizing the convergence of the heterogeneous radio networks and the optimal utilization of the radio resources. With the continuous development of E2R technology and cognitive theory, the evolution from existing radio networks to future reconfigurable radio networks with the cognitive ability becomes possible. Nowadays the research aspects of E2R include the system architecture of reconfigurable radio networks and some key technologies for their evolution.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
Capacity analysis is a fundamental and essential work for evaluating the performance of cognitive wireless mesh network (CWMN) which is considered a promising option for the future network. Power control is an effic...Capacity analysis is a fundamental and essential work for evaluating the performance of cognitive wireless mesh network (CWMN) which is considered a promising option for the future network. Power control is an efficient way to avoid interference and improve capacity of wireless mesh networks. In this paper, a quantitative result of the per-node average throughput capacity of CWMN with power control is deduced for the first time, which is much helpful for understanding the limitations of CWMN. Firstly, under the large-scale channel fading model and protocol interference model, a closed-form expression for the maximum channel capacity of each node with power control is presented, under the constraint that the interference tolerated by the primary users (PUs) does not exceed a threshold. And then, with the deduced channel capacity result, the per-node average throughput capacity of CWMN is derived based on two regular topologies, i.e. square topology and triangle topology. The simulation results indicate that the capacity is effectively improved with power control, and affected by topology, tolerated interference threshold, the number of cognitive users (CUs) and primary users (PUs).展开更多
基金the China Post Doctoral Science Foundation (No.20070410396)the National Hi-Tech Re-search and Development Project (863 Project) of China (No.2007AA01Z257).
文摘In this letter,an Opportunistic Interference Cancellation(OIC) is first introduced as a rate control strategy for secondary user in cognitive wireless networks. Based on the OIC rate control method,an optimal power control strategy for multichannel cognitive wireless networks is proposed. The algorithm aims to maximize the total transmit rate of cognitive user through appropriately controlling the transmit power of each subchannel under the constraint that the interference temperature at the primary receiver is below a certain threshold. Three suboptimal power control methods,namely Equal Power Transmission(EPT) ,Equal Rate Transmission(ERT) and Equal Interference Transmission(EIT) ,are also proposed. The performances of the proposed power control methods are compared through numerical simulations.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:14-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by the Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.
基金supported by National Basic Research Program of China(2009CB320401)the National Key Scientific and Technological Project of China(2008ZX03003-005,2008ZX03003)+1 种基金the Fundamental Research Funds for the Central Universities BUPT2009RC0111Research Funds of Doctoral Program of Higher Education of China(20090005110003)
文摘This paper studies the problem of effective resource allocation for multi-radio access technologies (Multi-RAT) nodes in heterogeneous cognitive wireless networks (HCWNs). End-to-end utility, which is defined as the delay of end-to-end communication, is taken into account in this paper. In the scenario of HCWNs, it is assumed that the cognitive radio nodes have the ability of Multi-RAT and can communicate with each other through different paths simultaneously by splitting the arrival packets. In this paper, the problem is formulated as the optimization of split ratio and power allocation of the source cognitive radio node to minimize the delay of end-to-end communication, and a low complexity step-by-step iterative algorithm is proposed. Numerical results show good performance of the proposed algorithm over two other conventional algorithms.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
文摘In order to improve the Energy Efficiency(EE)and spectrum utilization of Cognitive Wireless Powered Networks(CWPNs),a combined spatial-temporal Energy Harvesting(EH)and relay selection scheme is proposed.In the proposed scheme,for protecting the Primary User(PU),a two-layer guard zone is set outside the PU based on the outage probability threshold of the PU.Moreover,to increase the energy of the CWPNs,the EH zone in the two-layer guard zone allows the Secondary Users(SUs)to spatially harvest energy from the Radio Frequency(RF)signals of temporally active PUs.To improve the utilization of the PU spectrum,the guard zone outside the EH zone allows for the constrained power transmission of SUs.Moreover,the relay selection transmission is designed in the transmission zone of the SU to improve the EE of the CWPNs.In addition to the EE of the CWPNs,the outage probabilities of the SU and PU are derived.The results reveal that the setting of a two-layer guard zone can effectively reduce the outage probability of the PU and improve the EE of CWPNs.Furthermore,the relay selection transmission decreases the outage probabilities of the SUs.
基金Supported by the National High Technology Research and Development Program (No. 2009AA011504)
文摘Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.
基金Key Project of Chinese Ministry of Education(No.206055)
文摘IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC), utilizig the vacant spectrum bands already allocated to broadcast TV without interference.. The WRAN employs CR technologies to sense and estimate the television signals and use the technologies of dynamic spectrum management to find and then allocate vacant spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue, WRANs and IEEE 802.22, CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.
文摘IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC),to use the already allocated fallow spectrums to broadcast TV in a non-interference way. The WRAN employs CR technologies to sense and estimate the television frequencies and use the technologies of dynamic spectrum management to find and then allocate idle spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue,WRANs and IEEE 802.22,CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.
基金supported in part by the National Natural Science Foundation of China(61471115)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2014ZX03003010-002)+1 种基金the General Program of Natural Science Foundation of Jiangsu Province(BK20131299)the 2016 Science and Technology joint research and innovation foundation of Jiangsu province(SBY2016020323)
文摘In order to enhance the efficiency of spectrum utilization and reduce communication overhead in spectrum sharing process, we propose a two-stage dynamic spectrum sharing scheme in which cooperative and noncooperative modes are analyzed in both stages. In particular, the existence and the uniqueness of Nash Equilibrium(NE) strategies for noncooperative mode are proved. In addition, a distributed iterative algorithm is proposed to obtain the optimal solutions of the scheme. Simulation studies are carried out to show the performance comparison between two modes as well as the system revenue improvement of the proposed scheme compared with a conventional scheme without a virtual price control factor.
基金Mine IOT converged communication network architecture and its transmission technology and equipment(2017YFC0804405).
文摘In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper proposes a joint random detection strategy using the idle cognitive users in cognitive wireless networks.After adding idle cognitive users for detection,the compressed sensing model is employed to describe the number of available channels obtained by the cognitive base station to derive the detection performance of the cognitive network at this time.Both theoretical analysis and simulation results show that using idle cognitive users can reduce service delay and improve the throughput of cognitive networks.After considering the time occupied by cognitive users to report detection information,the optimal participation number of idle cognitive users in joint detection is obtained through the optimization algorithm.
基金supported by the National Natural Science Foundation of China under Grant No. 60632030the E3 Project(FP7-ICT-2007-216248) with in Community’s Seventh Framework Program.
文摘The End-to-End Reconfigurability (E2R) project aims at realizing the convergence of the heterogeneous radio networks and the optimal utilization of the radio resources. With the continuous development of E2R technology and cognitive theory, the evolution from existing radio networks to future reconfigurable radio networks with the cognitive ability becomes possible. Nowadays the research aspects of E2R include the system architecture of reconfigurable radio networks and some key technologies for their evolution.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金supported by the National Science & Technology Major Project of 2011ZX03001-005-02the National Natural Science Foundation of China (61272516, 61272518, 61170275)the China-Canada Project (2010DFA111320)
文摘Capacity analysis is a fundamental and essential work for evaluating the performance of cognitive wireless mesh network (CWMN) which is considered a promising option for the future network. Power control is an efficient way to avoid interference and improve capacity of wireless mesh networks. In this paper, a quantitative result of the per-node average throughput capacity of CWMN with power control is deduced for the first time, which is much helpful for understanding the limitations of CWMN. Firstly, under the large-scale channel fading model and protocol interference model, a closed-form expression for the maximum channel capacity of each node with power control is presented, under the constraint that the interference tolerated by the primary users (PUs) does not exceed a threshold. And then, with the deduced channel capacity result, the per-node average throughput capacity of CWMN is derived based on two regular topologies, i.e. square topology and triangle topology. The simulation results indicate that the capacity is effectively improved with power control, and affected by topology, tolerated interference threshold, the number of cognitive users (CUs) and primary users (PUs).