Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished...Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably.展开更多
The coherence cube technology has become an important technology for the seismic attribute interpretation, which extracts the discontinuities of the events through analyzing the similarities of adjacent seismic channe...The coherence cube technology has become an important technology for the seismic attribute interpretation, which extracts the discontinuities of the events through analyzing the similarities of adjacent seismic channels to identify the fault form. The coherence cube technology which uses constant time window lengths can not balance the shallow layers and the deep layers, because the frequency band of seismic data varies with time. When analyzing the shallow layers, the time window will crossover a lot of events, which will lead to weak focusing ability and failure to delineate the details. While the time window will not be long enough for analyzing deep layers, which will lead to low accuracy because the coherences near the zero points of the events are heavily influenced by noise. For solving the problem, we should make a research on the coherence cube technology with self-adaptive time window. This paper determines the sample points' time window lengths in real time by computing the instantaneous frequency bands with Wavelet Transformation, which gives a coherence computing method with the self-adaptive time window lengths. The result shows that the coherence cube technology with self-adaptive time window based on Wavelet Transformation improves the accuracy of fault identification, and supresses the noise effectively. The method combines the advantages of long time window method and short time window method.展开更多
Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing fault...Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing faults and fractures, interpreting ancient channels, and edge detection of oil-gas reservoir. Coherent cube is to condense and extract information around a certain point in 3D data volume, and then highlight the original characteristics of the geologic body at this point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and those points having rather small coherent value are related to the discontinuity of geologic body. In practical production, people often interpret horizontal slices or layer slices of coherent cube, and this provides advantageous foundations for resolving special problems in oil-gas exploration.……展开更多
基金sponsored by Important National Science and Technology Specific Projects of China (Grant No.2008ZX05023-005-011 and No. 2008ZX05040-003)the National 973 Program of China (Grant No. 2006CB202208)
文摘Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably.
文摘The coherence cube technology has become an important technology for the seismic attribute interpretation, which extracts the discontinuities of the events through analyzing the similarities of adjacent seismic channels to identify the fault form. The coherence cube technology which uses constant time window lengths can not balance the shallow layers and the deep layers, because the frequency band of seismic data varies with time. When analyzing the shallow layers, the time window will crossover a lot of events, which will lead to weak focusing ability and failure to delineate the details. While the time window will not be long enough for analyzing deep layers, which will lead to low accuracy because the coherences near the zero points of the events are heavily influenced by noise. For solving the problem, we should make a research on the coherence cube technology with self-adaptive time window. This paper determines the sample points' time window lengths in real time by computing the instantaneous frequency bands with Wavelet Transformation, which gives a coherence computing method with the self-adaptive time window lengths. The result shows that the coherence cube technology with self-adaptive time window based on Wavelet Transformation improves the accuracy of fault identification, and supresses the noise effectively. The method combines the advantages of long time window method and short time window method.
文摘Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing faults and fractures, interpreting ancient channels, and edge detection of oil-gas reservoir. Coherent cube is to condense and extract information around a certain point in 3D data volume, and then highlight the original characteristics of the geologic body at this point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and those points having rather small coherent value are related to the discontinuity of geologic body. In practical production, people often interpret horizontal slices or layer slices of coherent cube, and this provides advantageous foundations for resolving special problems in oil-gas exploration.……