A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent apert...This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.展开更多
The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship betwee...The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship between two random variables (i.e., between two seismic traces). However, mathematically speaking, a linear correlation coefficient cannot be applied to describe nonlinear relationships between variables. In order to overcome this limitation of liner correlation coefficient. We proposed an improved concordance measurement algorithm based on Kendall's tau. That mainly concern the sensitivity of the liner correlation coefficient and concordance measurements on the waveform. Using two designed numerical models tests sensitivity of waveform similarity affected by these two factors. The analysis of both the numerical model results and real seismic data processing suggest that the proposed method, combining information divergence measurement, can not only precisely characterize the variations of waveform and the heterogeneity of an underground geological body, but also does so with high resolution. In addition, we verified its effectiveness by the actual application of real seismic data from the north of China.展开更多
The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can c...The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.展开更多
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)+2 种基金the Foundation of Tsinghua University(20101081772)the Foundation of National Laboratory of Information Control Technology for Communication System of Chinathe Foundation of National Information Control Laboratory
文摘This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.
基金supported by the Major Programs of National Natural Science Foundation of China(No.41390454)the Major Research Plan of the National Natural Science Foundation of China(No.91330204)
文摘The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship between two random variables (i.e., between two seismic traces). However, mathematically speaking, a linear correlation coefficient cannot be applied to describe nonlinear relationships between variables. In order to overcome this limitation of liner correlation coefficient. We proposed an improved concordance measurement algorithm based on Kendall's tau. That mainly concern the sensitivity of the liner correlation coefficient and concordance measurements on the waveform. Using two designed numerical models tests sensitivity of waveform similarity affected by these two factors. The analysis of both the numerical model results and real seismic data processing suggest that the proposed method, combining information divergence measurement, can not only precisely characterize the variations of waveform and the heterogeneity of an underground geological body, but also does so with high resolution. In addition, we verified its effectiveness by the actual application of real seismic data from the north of China.
基金supported by the National Natural Science Foundation of China(6110216960925005)
文摘The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.