In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The n...In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The normalization factor of GPACS is related to Hermite polynomial. We also derive the explicit expressions of its statistical properties such as photocount distribution, Wigner function and tomogram and investigate their behaviour as the photon-added number varies graphically. It is found that GPACS is a kind of nonclassical state since Wigner function exhibits the negativity by increasing the photon-added number.展开更多
Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermit...Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.展开更多
This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, ...This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.展开更多
This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coh...This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.展开更多
Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image co...Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image contrast and provide an enhanced resolution,adaptive weighting algorithms were applied in VS imaging.In this paper,we proposed an adjustable generalized coherence factor(aGCF)for the synthetic aperture sequential beamforming(SASB)ofVS imaging to improve image quality.The value of aGCF is adjusted by a sequence intensity factor(SIF)that is defined as the ratio between the effective low resolution scan lines(LRLs)intensity and total LRLs strength.The aGCF-weighted VS(aGCF-VS)images were compared with standard VS images and GCF-weighted VS(GCF-VS)images.Simulation and experimental results demonstrated that the contrast ratio(CR)and contrastto-noise ratio(CNR)of aGCF-VS are greatly improved,compared with standard VS imaging.And in comparison with GCF-VS,aGCF-VS can obtain better CNR and speckle signal-to-noise ratio(sSNR)whilemaintaining similar CR.Therefore,aGCF is suitable for VS imaging to improve contrast and preserve speckle pattern.展开更多
Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation r...Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation rather than the c-number approximation, we And that, via a Feshbach resonance at zero temperature, the states of the coupled Bose system are generalized SU(1,1) SU(1,1) coherent states. The Bose-Einstein condensation occurs in response to the spontaneous U(1) symmetry breaking.展开更多
In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a sup...In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This latter characteristic renders this theory a more universal feature in comparison with other theories developed by the operator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a “flat/steep” band model for searching new superconductors.展开更多
A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems...A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems(WAMS) in emergency control of power systems are increasing. Therefore, a new WAMS-based controlled islanding scheme for interconnected power systems is proposed. First, four similarity indexes associated with the trajectories of generators are defined, and the weights of these four indexes are determined by using the well-developed entropy theory. Then, a coherency identification algorithm based on hierarchical clustering is presented to determine the coherent groups of generators.Secondly, an optimization model for determining controlled islanding schemes based on the coherent groups of generators is developed to seek the optimal cutset. Finally, a 16-generator68-bus power system and a reduced WECC 29-unit 179-bus power system are employed to demonstrate the proposed WAMS-based controlled islanding schemes, and comparisons with existing slow coherency based controlled islanding strategies are also carried out.展开更多
A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of th...A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.展开更多
In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along w...In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.展开更多
In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions ...In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The normalization factor of GPACS is related to Hermite polynomial. We also derive the explicit expressions of its statistical properties such as photocount distribution, Wigner function and tomogram and investigate their behaviour as the photon-added number varies graphically. It is found that GPACS is a kind of nonclassical state since Wigner function exhibits the negativity by increasing the photon-added number.
基金supported by the National Natural Science Foundation of China (Grant No.11174114)the Research Foundation of Changzhou Institute of Technology,China (Grant No.YN1007)
文摘Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.
基金supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09)
文摘This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.
文摘This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.
基金The National Natural Science Foundation of China(Grant No.62071165)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2021HGTB0074)the China Postdoctoral Science Foundation(Grant No.2021M690853).
文摘Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image contrast and provide an enhanced resolution,adaptive weighting algorithms were applied in VS imaging.In this paper,we proposed an adjustable generalized coherence factor(aGCF)for the synthetic aperture sequential beamforming(SASB)ofVS imaging to improve image quality.The value of aGCF is adjusted by a sequence intensity factor(SIF)that is defined as the ratio between the effective low resolution scan lines(LRLs)intensity and total LRLs strength.The aGCF-weighted VS(aGCF-VS)images were compared with standard VS images and GCF-weighted VS(GCF-VS)images.Simulation and experimental results demonstrated that the contrast ratio(CR)and contrastto-noise ratio(CNR)of aGCF-VS are greatly improved,compared with standard VS imaging.And in comparison with GCF-VS,aGCF-VS can obtain better CNR and speckle signal-to-noise ratio(sSNR)whilemaintaining similar CR.Therefore,aGCF is suitable for VS imaging to improve contrast and preserve speckle pattern.
文摘Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation rather than the c-number approximation, we And that, via a Feshbach resonance at zero temperature, the states of the coupled Bose system are generalized SU(1,1) SU(1,1) coherent states. The Bose-Einstein condensation occurs in response to the spontaneous U(1) symmetry breaking.
文摘In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This latter characteristic renders this theory a more universal feature in comparison with other theories developed by the operator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a “flat/steep” band model for searching new superconductors.
基金jointly supported by the National Key Research Program of China(No.2016YFB0900105)National Natural Science Foundation of China(No.51377005)Specialized Research Fund for the Doctoral Program of Higher Education(No.20120101110112)
文摘A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems(WAMS) in emergency control of power systems are increasing. Therefore, a new WAMS-based controlled islanding scheme for interconnected power systems is proposed. First, four similarity indexes associated with the trajectories of generators are defined, and the weights of these four indexes are determined by using the well-developed entropy theory. Then, a coherency identification algorithm based on hierarchical clustering is presented to determine the coherent groups of generators.Secondly, an optimization model for determining controlled islanding schemes based on the coherent groups of generators is developed to seek the optimal cutset. Finally, a 16-generator68-bus power system and a reduced WECC 29-unit 179-bus power system are employed to demonstrate the proposed WAMS-based controlled islanding schemes, and comparisons with existing slow coherency based controlled islanding strategies are also carried out.
文摘A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.
基金supported by the National Natural Science Foundation of China(No.61377075)Program for New Century Excellent Talents in University(No.NCET-07-0611)
文摘In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.
基金supported by the National Natural Science Foundation of China (Grant No.11371005)Hebei Natural Science Foundation of China (Grant Nos.A2012205013 and A2014205060)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.3142014068)
文摘In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.