Coherent and incoherent internal tides(CITs and ICITs) in the southern South China Sea were investigated from two sets of _18-month mooring current records. The CITs were mainly composed of diurnal Q _1, O _1, P _1 an...Coherent and incoherent internal tides(CITs and ICITs) in the southern South China Sea were investigated from two sets of _18-month mooring current records. The CITs were mainly composed of diurnal Q _1, O _1, P _1 and K _1 and semidiurnal M_2. The observed diurnal internal tides(ITs) were more coherent than the semidiurnal constituents. Coherent diurnal variance accounted for approximately 58% of the diurnal motion, whereas semidiurnal tides contained a much smaller fraction(35%) of coherent motion. The ICITs mainly consisted of motion at non-tidal harmonic frequencies around the tidal frequency, and showed clear intermittency. The modal decomposition of CITs and ICITs showed that CITs were dominated by mode-1, whereas mode-1 and higher modes in ICITs signals showed comparable amplitudes. CITs and ICITs accounted for approximately 64% and 36% of the total kinetic energy of internal tides, respectively.展开更多
基金Supported by the Special Fund of the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11010202)the National Basic Research Program of China(973 Program)(No.2013CB430303)+1 种基金the National Natural Science Foundation of China(NSFC)(Nos.41376022,41276021)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Coherent and incoherent internal tides(CITs and ICITs) in the southern South China Sea were investigated from two sets of _18-month mooring current records. The CITs were mainly composed of diurnal Q _1, O _1, P _1 and K _1 and semidiurnal M_2. The observed diurnal internal tides(ITs) were more coherent than the semidiurnal constituents. Coherent diurnal variance accounted for approximately 58% of the diurnal motion, whereas semidiurnal tides contained a much smaller fraction(35%) of coherent motion. The ICITs mainly consisted of motion at non-tidal harmonic frequencies around the tidal frequency, and showed clear intermittency. The modal decomposition of CITs and ICITs showed that CITs were dominated by mode-1, whereas mode-1 and higher modes in ICITs signals showed comparable amplitudes. CITs and ICITs accounted for approximately 64% and 36% of the total kinetic energy of internal tides, respectively.