Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events ...Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.展开更多
To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-t...To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.展开更多
We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for ...We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for separation distance of 100 m between the two points on the ground surface,which is in the range of engineering interest.Our examples illustrate the consequences of:(a)standing waves that result from interference of the incident and reflected waves from a near vertical contrast in material properties,(b)standing waves within a concave inhomogeneity(a semi-circular valley in our examples),and(c)smaller motions in the diffraction zone,behind the inhomogeneity.We show that it is possible to reduce coherency,to the extent observed for recorded strong earthquake ground motion,even by a single inclusion in a half space,for incident ground motion that is coherent.We also illustrate the combined effects of geometric spreading and finite fault width,superimposed on the otherwise dominating effects caused by interference.Our examples show reduction of coherence for specific angles of incident waves,while,for other angles of incidence,the coherence remains essentially equal to one.展开更多
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi...The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.展开更多
Block matching motion estimation techniques have been widely used in video coding applications. However, they also show their deficiency in the coherence of motion vectors and antinoise ability. This paper proposes a...Block matching motion estimation techniques have been widely used in video coding applications. However, they also show their deficiency in the coherence of motion vectors and antinoise ability. This paper proposes a modified algorithm which can adopt any one of existing search algorithms and pays more attention to the correlation of neighboring blocks.It will be shown that the proposed algorithm is simple and significantly reduces the computational complexity. Simulation results also show that this algorithm improves the smoothness of the motion field, hence reducing the cost to code the motion vectors while keeping good performance comparable with the conventional block matching motion estimation algorithm.展开更多
The energy spectra of three types of two-dimensional potentials(we will call them‘Davidson-like potentials’(DLPs)),characterized by four minima separated by barriers,are investigated.The predictions for spectra and ...The energy spectra of three types of two-dimensional potentials(we will call them‘Davidson-like potentials’(DLPs)),characterized by four minima separated by barriers,are investigated.The predictions for spectra and wave functions are obtained by using the nine-point finite-difference method.For these potentials,with the existence of a single configuration,a transition of spectra,as a function of barrier height,is covered from tunneling splitting modes to fluctuations phenomena,with equal peaks wave functions,crossing to the spectra of purely anharmonic oscillator potentials(AOPs).A different type of phase transition occurs when two(or more)configurations coexist.With the change of the parameters,a transition of spectra is covered from coexistence phenomena of two distinct quantum tunneling modes to fluctuations phenomena,with unequal peaks wave functions,crossing to the spectra of purely AOPs.Using DLPs,a particular application of the coherent quadropole-octupole model to describe energy bands with alternating parity of the nuclei^(100)Mo,^(146,148)Nd,^(148,150)Sm,^(220)Ra,^(220,222)Rn,and^(220,222)Th is presented.The global parametrization of the model for the selected nuclei is achieved.展开更多
A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the allo...A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.展开更多
基金Supported by National Natural Science Foundation of China Under Grant No.90715005,No.NCET-07-0186 and No.200802860007
文摘Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.
基金The National Natural Science Foundation of China(No.60971098,61201345)
文摘To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.
文摘We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for separation distance of 100 m between the two points on the ground surface,which is in the range of engineering interest.Our examples illustrate the consequences of:(a)standing waves that result from interference of the incident and reflected waves from a near vertical contrast in material properties,(b)standing waves within a concave inhomogeneity(a semi-circular valley in our examples),and(c)smaller motions in the diffraction zone,behind the inhomogeneity.We show that it is possible to reduce coherency,to the extent observed for recorded strong earthquake ground motion,even by a single inclusion in a half space,for incident ground motion that is coherent.We also illustrate the combined effects of geometric spreading and finite fault width,superimposed on the otherwise dominating effects caused by interference.Our examples show reduction of coherence for specific angles of incident waves,while,for other angles of incidence,the coherence remains essentially equal to one.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.
文摘Block matching motion estimation techniques have been widely used in video coding applications. However, they also show their deficiency in the coherence of motion vectors and antinoise ability. This paper proposes a modified algorithm which can adopt any one of existing search algorithms and pays more attention to the correlation of neighboring blocks.It will be shown that the proposed algorithm is simple and significantly reduces the computational complexity. Simulation results also show that this algorithm improves the smoothness of the motion field, hence reducing the cost to code the motion vectors while keeping good performance comparable with the conventional block matching motion estimation algorithm.
文摘The energy spectra of three types of two-dimensional potentials(we will call them‘Davidson-like potentials’(DLPs)),characterized by four minima separated by barriers,are investigated.The predictions for spectra and wave functions are obtained by using the nine-point finite-difference method.For these potentials,with the existence of a single configuration,a transition of spectra,as a function of barrier height,is covered from tunneling splitting modes to fluctuations phenomena,with equal peaks wave functions,crossing to the spectra of purely anharmonic oscillator potentials(AOPs).A different type of phase transition occurs when two(or more)configurations coexist.With the change of the parameters,a transition of spectra is covered from coexistence phenomena of two distinct quantum tunneling modes to fluctuations phenomena,with unequal peaks wave functions,crossing to the spectra of purely AOPs.Using DLPs,a particular application of the coherent quadropole-octupole model to describe energy bands with alternating parity of the nuclei^(100)Mo,^(146,148)Nd,^(148,150)Sm,^(220)Ra,^(220,222)Rn,and^(220,222)Th is presented.The global parametrization of the model for the selected nuclei is achieved.
文摘A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.