To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ...To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.展开更多
Willing to work in reliability theory in a general set up, under stochastically dependence conditions, we intend to characterize a not identically spare standby redundancy operation through compensator transform under...Willing to work in reliability theory in a general set up, under stochastically dependence conditions, we intend to characterize a not identically spare standby redundancy operation through compensator transform under a complete information level, the physic approach, that is, observing its component lifetime. We intend to optimize system reliability under standby redundancy allocation of its components, particularly, under minimal standby redundancy. To get results, we will use a coherent system representation through a signature point process.展开更多
In this paper we discuss how to maintain the signature representation of a coherent system through a minimal repair redundancy. In a martingale framework we use compensator transforms to identify how the components mi...In this paper we discuss how to maintain the signature representation of a coherent system through a minimal repair redundancy. In a martingale framework we use compensator transforms to identify how the components minimal repairs affect the order statistics in the signature representation.展开更多
In this paper we discuss how to measure the component importance for a system in its signature representation. The definition is given in terms of compensator transform and it can be considered as a new formalization ...In this paper we discuss how to measure the component importance for a system in its signature representation. The definition is given in terms of compensator transform and it can be considered as a new formalization of the ideas presented by Bergman [1] in the context of system signature.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
We investigate the phenomenon of coherent perfect absorption in a high-order system with three passive resonators coupled to a super-surface to form this three-state coherent perfect absorber. The effective parity tim...We investigate the phenomenon of coherent perfect absorption in a high-order system with three passive resonators coupled to a super-surface to form this three-state coherent perfect absorber. The effective parity time (PT) symmetry in the passive system has received much attention, and in this open three-state PT symmetric system, the incident wave is used as the effective gain instead of balancing the material gain and loss. We analyze the variation of coherent perfect absorption of this system with the coupling coefficient of the system by simulation.展开更多
In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si...In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.展开更多
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition...As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocit...The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat...In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.展开更多
Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based ...Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure.The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field.By changing the detuning of the probe field,the phase and intensity of the generated vertex four-wave mixing field can be changed.When the probe field takes a large detuning value,the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field.At the same time,we also provide a detailed explanation based on the dispersion relationship,and the results agree well with our simulation results.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,Scien...●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,ScienceDirect,ProQuest and Cochrane Library were searched before May 31,2023 which adopted AI for glaucoma detection with SD-OCT images.All pieces of the literature were screened and extracted by two investigators.Meta-analysis,Meta-regression,subgroup,and publication of bias were conducted by Stata16.0.The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool.●RESULTS:Twenty studies and 51 models were selected for systematic review and Meta-analysis.The pooled sensitivity and specificity were 0.91(95%CI:0.86–0.94,I2=94.67%),0.90(95%CI:0.87–0.92,I2=89.24%).The pooled positive likelihood ratio(PLR)and negative likelihood ratio(NLR)were 8.79(95%CI:6.93–11.15,I2=89.31%)and 0.11(95%CI:0.07–0.16,I2=95.25%).The pooled diagnostic odds ratio(DOR)and area under curve(AUC)were 83.58(95%CI:47.15–148.15,I2=100%)and 0.95(95%CI:0.93–0.97).There was no threshold effect(Spearman correlation coefficient=0.22,P>0.05).●CONCLUSION:There is a high accuracy for the detection of glaucoma with AI with SD-OCT images.The application of AI-based algorithms allows together with“doctor+artificial intelligence”to improve the diagnosis of glaucoma.展开更多
The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communicat...The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.展开更多
The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for...The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.展开更多
基金supported by the National Natural Science Foundation of China (7110111671271170)+2 种基金the National Basic Research Program of China (973 Progrom) (2010CB328000)the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.
文摘Willing to work in reliability theory in a general set up, under stochastically dependence conditions, we intend to characterize a not identically spare standby redundancy operation through compensator transform under a complete information level, the physic approach, that is, observing its component lifetime. We intend to optimize system reliability under standby redundancy allocation of its components, particularly, under minimal standby redundancy. To get results, we will use a coherent system representation through a signature point process.
文摘In this paper we discuss how to maintain the signature representation of a coherent system through a minimal repair redundancy. In a martingale framework we use compensator transforms to identify how the components minimal repairs affect the order statistics in the signature representation.
文摘In this paper we discuss how to measure the component importance for a system in its signature representation. The definition is given in terms of compensator transform and it can be considered as a new formalization of the ideas presented by Bergman [1] in the context of system signature.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
文摘We investigate the phenomenon of coherent perfect absorption in a high-order system with three passive resonators coupled to a super-surface to form this three-state coherent perfect absorber. The effective parity time (PT) symmetry in the passive system has received much attention, and in this open three-state PT symmetric system, the incident wave is used as the effective gain instead of balancing the material gain and loss. We analyze the variation of coherent perfect absorption of this system with the coupling coefficient of the system by simulation.
基金supported by the Taishan Scholars Programs of Shandong Province(No.tsqn201909165)the Global Change and Air-Sea Interaction Program(Nos.GASI-04-QYQH-03,GASI-01-WIND-STwin)the National Natural Science Foundation of China(Nos.41876028,42349910).
文摘In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.
基金financially supported by the National Key R&D Program of China (2022YFC3700400&2022YFB3901700)。
文摘As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12202309,1233000165,12172242,and 12272265)Science and Technology Program of Gansu Province of China(Grant No.22JR5RA304)Tianjin Research Innovation for Postgraduate Students(Grant No.22KJ049)。
文摘The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金supported by the National Natural Science Foundation of China (62261047,62066040)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075)+3 种基金the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637)PhD Research Start-up Foundation of Tongren University (trxyDH1710)Tongren Science and Technology Planning Project ((2018)22)。
文摘In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11704151 and 11247201)the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province (Grant No.20150215)。
文摘Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure.The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field.By changing the detuning of the probe field,the phase and intensity of the generated vertex four-wave mixing field can be changed.When the probe field takes a large detuning value,the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field.At the same time,we also provide a detailed explanation based on the dispersion relationship,and the results agree well with our simulation results.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
文摘●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,ScienceDirect,ProQuest and Cochrane Library were searched before May 31,2023 which adopted AI for glaucoma detection with SD-OCT images.All pieces of the literature were screened and extracted by two investigators.Meta-analysis,Meta-regression,subgroup,and publication of bias were conducted by Stata16.0.The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool.●RESULTS:Twenty studies and 51 models were selected for systematic review and Meta-analysis.The pooled sensitivity and specificity were 0.91(95%CI:0.86–0.94,I2=94.67%),0.90(95%CI:0.87–0.92,I2=89.24%).The pooled positive likelihood ratio(PLR)and negative likelihood ratio(NLR)were 8.79(95%CI:6.93–11.15,I2=89.31%)and 0.11(95%CI:0.07–0.16,I2=95.25%).The pooled diagnostic odds ratio(DOR)and area under curve(AUC)were 83.58(95%CI:47.15–148.15,I2=100%)and 0.95(95%CI:0.93–0.97).There was no threshold effect(Spearman correlation coefficient=0.22,P>0.05).●CONCLUSION:There is a high accuracy for the detection of glaucoma with AI with SD-OCT images.The application of AI-based algorithms allows together with“doctor+artificial intelligence”to improve the diagnosis of glaucoma.
基金National Key Research and Development Program of China (2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China (12104264,12192254,92250304,and 12374311)+2 种基金China Postdoctoral Science Foundation (2022T150392)Natural Science Foundation of Shandong Province (ZR2021QA014 and ZR2023YQ006)Qingchuang Science and Technology Plan of Shandong Province (2022KJ246).
文摘The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.
基金This work was financed in the framework of the strategic program DOB-1-6/1/PS/2014 funded by the National Center for Research and Development of Poland.
文摘The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.