On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio...On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading.展开更多
The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysi...The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity, hardening property, dilatancy, stress path dependency, non-coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model.展开更多
The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of ...The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on LegendreGalerkin method and Runge-Kutta formulas of order four and five,the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free-and fixed-headed piles.Mathematica,as one of the world’s leading computational software,was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore,the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results.展开更多
The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse par...The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different.展开更多
In this study,experimental and numerical investigations are performed to clarify the seepage failure by heave in sheeted excavation pits in stratified cohesionless soils in which a relatively permeable soil layer(Kupp...In this study,experimental and numerical investigations are performed to clarify the seepage failure by heave in sheeted excavation pits in stratified cohesionless soils in which a relatively permeable soil layer(Kupper)lies above a less permeable soil layer(Klower)between excavation base and wall tip.It is shown that the evaluation of base stabilities of excavation pits against seepage failure by using Terzaghi and Peck's approach leads to considerably lower critical potential differences than those obtained from the model tests.On the other hand,a relatively good agreement is achieved between the results of the model tests and the finite element(FE)analyses.Further investigations are performed by using axisymmetric excavation models with various dimensions and ground conditions,and a comparison between the results obtained from Terzaghi and Peck's approach and finite element analyses is given.展开更多
文摘On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading.
文摘The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity, hardening property, dilatancy, stress path dependency, non-coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model.
文摘The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on LegendreGalerkin method and Runge-Kutta formulas of order four and five,the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free-and fixed-headed piles.Mathematica,as one of the world’s leading computational software,was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore,the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results.
文摘利用改进的渗透装置试验研究了细颗粒(0.075~1 mm)含量相同时骨架颗粒组成含量不同对散粒土的管涌发生临界条件以及颗粒侵蚀流失规律的影响,结果表明:不同颗粒级配的试样在管涌发生前,水力梯度与渗流速度呈线性关系,基本符合达西定律;骨架颗粒1~2、2~3、3~5 mm 3个粒径段对管涌发展起到了阻碍作用,其中1~2 mm粒径段颗粒对管涌孔隙的堵塞作用强于另外两个粒径段颗粒;对于不同级配的骨架颗粒,其不均匀系数越大,试样的下限临界水力梯度值就越大,细颗粒越不易起动,发生管涌的时间越晚,而不同级配的骨架颗粒对试样的上限临界水力梯度影响较小。
基金The authors are grateful for the financial support given by the Fundamental Research Funds for the Central Universities of Central South University(No.2018zzts195)the National Natural Science Foundation of China(No.51809292).
文摘The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different.
文摘In this study,experimental and numerical investigations are performed to clarify the seepage failure by heave in sheeted excavation pits in stratified cohesionless soils in which a relatively permeable soil layer(Kupper)lies above a less permeable soil layer(Klower)between excavation base and wall tip.It is shown that the evaluation of base stabilities of excavation pits against seepage failure by using Terzaghi and Peck's approach leads to considerably lower critical potential differences than those obtained from the model tests.On the other hand,a relatively good agreement is achieved between the results of the model tests and the finite element(FE)analyses.Further investigations are performed by using axisymmetric excavation models with various dimensions and ground conditions,and a comparison between the results obtained from Terzaghi and Peck's approach and finite element analyses is given.