期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
1
作者 SHI Hong-yan(史宏彦) +1 位作者 XIE Djng-yi(谢定义) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期329-340,共12页
On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio... On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading. 展开更多
关键词 cohesionless soil rotation of principal stress axes intermediate principal stress stress vector constitutive model THEORY
下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅱ)-APPLICATION
2
作者 史宏彦 谢定义 白琳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第7期842-853,共12页
The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysi... The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity, hardening property, dilatancy, stress path dependency, non-coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model. 展开更多
关键词 cohesionless soil rotation of principal stress axes stress vector constitutive model APPLICATION
下载PDF
Numerical Analysis of Laterally Loaded Long Piles in Cohesionless Soil
3
作者 Ayman Abd-Elhamed Mohamed Fathy Khaled M.Abdelgaber 《Computers, Materials & Continua》 SCIE EI 2022年第5期2175-2190,共16页
The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of ... The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on LegendreGalerkin method and Runge-Kutta formulas of order four and five,the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free-and fixed-headed piles.Mathematica,as one of the world’s leading computational software,was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore,the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results. 展开更多
关键词 Numerical solution laterally loaded pile cohesionless soil Legendre-Galerkin RUNGE-KUTTA
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
4
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 Active earth pressure Seepage Anisotropic permeability Retaining wall Fourier series expansion cohesionless soils
下载PDF
Strength and deformation behaviour of coarse-grained soil by true triaxial tests 被引量:7
5
作者 施维成 朱俊高 +1 位作者 赵仲辉 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2010年第5期1095-1102,共8页
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ... In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies. 展开更多
关键词 cohesionless soil coarse-grained soil true triaxial test STRENGTH DEFORMATION failure criterion
下载PDF
Calculation of earth pressure based on disturbed state concept theory 被引量:4
6
作者 朱剑锋 徐日庆 +1 位作者 李昕睿 陈页开 《Journal of Central South University》 SCIE EI CAS 2011年第4期1240-1247,共8页
The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobili... The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall.The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration.The disturbance of backfill is considered to be related to the wall movement under translation mode.On the basis of disturbed state concept(DSC),a general disturbance function was proposed which ranged from-1 to 1.The disturbance variables could be determined from the measured wall movements.A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived.A calculation method benefited from Rankine's theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode.The predicted results,including the magnitude and distribution of earth pressure,show good agreement with those of the model test and the finite element method.In addition,the disturbance parameter b was also discussed. 展开更多
关键词 disturbed state concept disturbance function translation mode earth pressure cohesionless soil
下载PDF
Shear behaviours of cohesionless mixed soils using the DEM:The influence of coarse particle shape 被引量:3
7
作者 Yangui Zhu Jian Gong Zhihong Nie 《Particuology》 SCIE EI CAS CSCD 2021年第2期151-165,共15页
The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse par... The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different. 展开更多
关键词 cohesionless mixed soils Particle shape ROUNDNESS Shear behaviours Discrete element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部