期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
ANALYSIS ON THE COHESIVE STRESS AT HALF INFINITE CRACK TIP
1
作者 王利民 徐世烺 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第8期917-927,共11页
The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mecha... The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are given. 展开更多
关键词 quasi-brittle material crack cohesive force integral equation method of least squares integral transformation method algebra equation
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
2
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK DAMAGE MICRO-MECHANICS Constitutive model cohesive force
下载PDF
Research on asphalt concrete pavement deicing technology 被引量:2
3
作者 马辉 杨若冲 钱吮智 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期336-342,共7页
In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angl... In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angle test and the shear test. The durability of the approach is examined by the accelerated abrasion test, and the skid resistance of the pavement with surface coating is examined by the British pendulum test and the surface texture depth test. In the contact angle test, the contact angle between hydrophobic admixture and water is 100.2°. In the shear test, the maximum shear stress is 0.06 MPa for the specimen coated with hydrophobic admixture, which is much lower than that of the specimen without hydrophobic admixture coating, 3.5 MPa. Furth- ermore, the ice and asphalt surface are completely separated for the coated specimen while not for the uncoated specimen. Based on the accelerated abrasion test, the residual hydro- phobic admixture in the veins of the pavement after abrasion still has a deicing effect. From the skid resistance tests, the British pendulum number (BPN) and the texture depth (TD) of the specimen coated with hydrophobic admixtures are larger than those of the standard requirements. The overall experi-mental observation indicates that the approach can effectively reduce close contact between asphalt pavement and ice; therefore, it can be a promising solution to road icing problems in winter. 展开更多
关键词 DEICING hydrophobic admixture surfacecoating cohesive force DURABILITY
下载PDF
A Dugdale-Barenblatt model for elliptical orifice problem with asymmetric cracks in one-dimensional orthorhombic quasicrystals
4
作者 Jing ZHANG Guanting LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1533-1546,共14页
By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to a... By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained. 展开更多
关键词 one-dimensional(1D)orthorhombic quasicrystal(QC) Dugdale-Barenblatt model atomic cohesive force zone crack
下载PDF
Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders 被引量:9
5
作者 Xiaolin Zhu Qiang Zhang +3 位作者 Cang Huang Yao Wang Chaohe Yang Fei Wei 《Particuology》 SCIE EI CAS CSCD 2017年第1期53-61,共9页
Fluidization of fine cohesive powders is seriously restricted by the strong interparticle cohesion. The rational combination of nanoparticles with fine cohesive powders is expected to obtain composite par- ticles with... Fluidization of fine cohesive powders is seriously restricted by the strong interparticle cohesion. The rational combination of nanoparticles with fine cohesive powders is expected to obtain composite par- ticles with improved flowability. In this work, we firstly reviewed the sandwich and three-point contact models regarding the fundamental principles of nano-additives in reducing cohesiveness. Based on these previous models, the effects of the size of nanoparticles, their agglomeration and coverage on the surface of cohesive powders in reducing interparticle forces were theoretically analyzed. To validate the the- ory effectiveness for the irregularly shaped cohesive powders, an extreme case of cubic powders coated with silica nanoparticles was fabricated, and the flowability of the composite particles was determined experimentally. Ultimately, based oN force balance of a single particle, a semi-theoretical criterion for predicting the fluidization behavior of coated powders was developed to guide the practical applications of improving the flowability of cohesive powders through structural design and modulation. 展开更多
关键词 Fine cohesive powders Fluidization Nanoparticle coatinglnterparticle adhesion force Flowability prediction
原文传递
Effect of the moisture content and dry density on the shear strength parameters of collapsing wall in hilly granite areas of South China 被引量:1
6
作者 Xiaoyang Wang Xiaoxing Qin +4 位作者 Jiahao Tan Linxi Yang Lixing Ou Xiaoqian Duan Yusong Deng 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第3期697-713,共17页
The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined.We systematically studied the influence of the interaction ... The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined.We systematically studied the influence of the interaction of dry densityρ(1.0,1.1,1.2,1.3,1.4 g/cm3)and moisture content w(0.05,0.1,0.15,0.2,0.25 g/g)on the stability of four soil layers in a collapsing wall.The soil cohesion decreased with increasing soil depth.The cohesion force initially increased and then decreased with increasingωand increased with increasingρ;the internal friction angle was mainly affected byωand decreased with increasingω.The cohesion could be used to effectively characterize the stability of the collapsing wall.The shear strength index was modeled based on interaction between the dry density and moisture content(R2>0.95).The optimal combination of moisture content and dry density was obtained,and the collapsing wall was in the most stable state at a moisture content of 0.12-0.19 g/g and a dry density of 1.40 g/cm3.Based on the analysis of the critical height and safety factor(FS),the FS values of the sandy layer(C)was 0.53 and 0.57 forωvalues of 0.25 g/g and 0.05 g/g,respectively.In the alternating process of soil wetting and drying,the basic properties of the soil changed;caused traceback erosion,and thereby affected the stability of the collapsing wall.Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls. 展开更多
关键词 Benggang Shear strength Cohesion force Internal friction angle Safety coefficient
原文传递
Two-fluid modeling of Geldart A particles in gas-fluidized beds 被引量:17
7
作者 M.A. van der Hoef J.A.M. Kuipers 《Particuology》 SCIE EI CAS CSCD 2008年第6期540-548,共9页
We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the ho... We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders. 展开更多
关键词 Gas-fluidized bed Geldart A particles Two-fluid model cohesive force Drag correlation
原文传递
Simulations of ice jam thickness distribution in the transverse direction 被引量:3
8
作者 王军 施发义 +2 位作者 陈胖胖 WU Peng SUI Jueyi 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第5期762-769,共8页
River ice often forms in the cold regions of northern hemisphere which can lead to ice jams (or ice dams). Water level can be significantly raised due to ice jams. As a consequence, disastrous ice flooding may be re... River ice often forms in the cold regions of northern hemisphere which can lead to ice jams (or ice dams). Water level can be significantly raised due to ice jams. As a consequence, disastrous ice flooding may be resulted, such as the ice jam flooding in the Nechako River in Prince George in winter 2007-2008. In the present study, the equations describing the ice jam thickness in the transverse direction are derived. The impact of the secondary vortex is considered while the cohesive force within ice cubes is neglected in the model. The relationship between the parameter β and the total water depth is established based on the assumption that all other variables except the velocities are kept constant on the same cross section. By using the parameter β and the developed equations, the ice jam thickness in the transverse direction can be predicted. The developed model is used to simulate the ice jam thickness in the transverse direction at the Hequ Reach of the Yellow River in China. The simulated ice jam thicknesses agree well with the field measurements on different cross sections. 展开更多
关键词 ice jam thickness secondary vortex cohesive force transverse distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部