Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influence...Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.展开更多
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a...To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.展开更多
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ...This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered.展开更多
An investigation is made on the soil pressure in a nine cabin opened bottom elliptical barrel structure. The calculation models using the penetration of negative pressure method have been developed. The first calculat...An investigation is made on the soil pressure in a nine cabin opened bottom elliptical barrel structure. The calculation models using the penetration of negative pressure method have been developed. The first calculation model is is for the construction stage involving three zones, namely, passive, transitional, and active established for the soil pressure in cabins. The other calculation model is based on the use stage, with the two (passive and active) zones for the soil pressure in cabins. The height of zones and the theoretical analytical solutions of inner soil pressure are derived. The analytical formulas of the models are proved using the finite element method and experimental data, and the formulas are analyzed in the inner soil pressure in the same condition. The calculation models can be used for other multi-position structural design or construction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50539110)
文摘Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.
基金Projects(51978084, 51678073) supported by the National Natural Science Foundation of ChinaProject(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China。
文摘To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.
基金supported by the National Key R & D program of China (Grant No. 2016YFC0800204)the National Key Basic Research Program of China (Grant No. 2015CB057801)Natural Science Foundation of China (Grant Nos. 51578499 & 51761130078)
文摘This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered.
基金supported by Open Fund Project of Hunan Province Research Center for Safety Control Technology and Equipment of Bridge Engineering(Changsha University of Science&Technology)(No.13KC05)
文摘An investigation is made on the soil pressure in a nine cabin opened bottom elliptical barrel structure. The calculation models using the penetration of negative pressure method have been developed. The first calculation model is is for the construction stage involving three zones, namely, passive, transitional, and active established for the soil pressure in cabins. The other calculation model is based on the use stage, with the two (passive and active) zones for the soil pressure in cabins. The height of zones and the theoretical analytical solutions of inner soil pressure are derived. The analytical formulas of the models are proved using the finite element method and experimental data, and the formulas are analyzed in the inner soil pressure in the same condition. The calculation models can be used for other multi-position structural design or construction.