Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field...Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.展开更多
A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven di...A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform,quasi-static magnetic fields on the millimetre scale.Here,we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter.Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target.Using this dual-axis platform for proton deflectometry,robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CBA01501)the National Nature Science Foundation of China(Grant Nos.11135012,11520101003 and 11375262)the National High Technology Research and Development Program of China.
文摘Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.
基金This paper was supported by the LLNL Academic Partnership in ICF,EPSRC grants EP/L01663X/1 and EP/L000644/1the Czech Republic MSMT targeted support of Large Infrastructures+1 种基金ELI Beamlines Project LQ1606 of the National Programme of Sustainability IIThe contribution of the JIHT RAS team was completed within the framework of the Russian Ministry state assignment for Science and Higher Education(topic#01201357846).
文摘A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform,quasi-static magnetic fields on the millimetre scale.Here,we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter.Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target.Using this dual-axis platform for proton deflectometry,robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.