The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter subunit electrostatic repulsion for ...The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.展开更多
Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ...Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ethane and propane, and LPG and naphtha mixtures have been conducted, and the software packages of COILSIM1 D and Sim CO are used to account for the cracking process in a tube reactor. The effects of the mixing ratio, coil outlet temperature, and pressure on cracking performance have been discussed in detail. The co-cracking of ethane and propane mixture leads to a lower profitability than the cracking of single ethane or single propane. For naphtha, cracking with LPG leads to a higher profitability than single cracking of naphtha, and more LPG can produce a higher profitability.展开更多
The stability of GCN4 leucine zipper and its four mutants in guanidine hydrochloride was detected to verify the contributions of different a position amino acid residues in polypeptide sequences to the forming and sta...The stability of GCN4 leucine zipper and its four mutants in guanidine hydrochloride was detected to verify the contributions of different a position amino acid residues in polypeptide sequences to the forming and stability of parallel coiled coils. The changes of the circular dichroism spectra show that the displace- ment of the a position polar asparagine and the increase of asparagine in the GCN4 leucine zipper can reduce the α-helix content of the coiled coil structure. The mutants are less stable than the natural peptide in guanidine hydrochloride. The results show that the interaction between the polar asparagine contributes to the conformational stability of the coiled coil. Both the conformation and the number of polar residues in the coiled coil also affect the α-helix content and its resistance to the denaturant. The conclusions provide evidence describing the folding process of proteins including coiled coils in vivo.展开更多
基金the"973" Projectthe Natural ScienceFoundation of Guangdongthe Research Foundationfor Returned Overseas Scholars of the Ministry ofEducationthe State Key L ab of Biomembrane &Membrane Biotechnology
文摘The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.
基金Supported by the National Natural Science Foundation of China(21276078)Shanghai Key Technologies R&D Programe(12dz1125100)+1 种基金Natural Science Foundation of Shanghai(13ZR1411300)Shanghai Leading Academic Discipline Project(B504)
文摘Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ethane and propane, and LPG and naphtha mixtures have been conducted, and the software packages of COILSIM1 D and Sim CO are used to account for the cracking process in a tube reactor. The effects of the mixing ratio, coil outlet temperature, and pressure on cracking performance have been discussed in detail. The co-cracking of ethane and propane mixture leads to a lower profitability than the cracking of single ethane or single propane. For naphtha, cracking with LPG leads to a higher profitability than single cracking of naphtha, and more LPG can produce a higher profitability.
基金Supported by the National Natural Science Foundation of China (No. 30170199) and the Basic Research Foundation of Tsinghua University (No. JC2003050)
文摘The stability of GCN4 leucine zipper and its four mutants in guanidine hydrochloride was detected to verify the contributions of different a position amino acid residues in polypeptide sequences to the forming and stability of parallel coiled coils. The changes of the circular dichroism spectra show that the displace- ment of the a position polar asparagine and the increase of asparagine in the GCN4 leucine zipper can reduce the α-helix content of the coiled coil structure. The mutants are less stable than the natural peptide in guanidine hydrochloride. The results show that the interaction between the polar asparagine contributes to the conformational stability of the coiled coil. Both the conformation and the number of polar residues in the coiled coil also affect the α-helix content and its resistance to the denaturant. The conclusions provide evidence describing the folding process of proteins including coiled coils in vivo.