Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is...Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries.展开更多
We link different microstructures to tribological behaviors of Ti-50.8 Ni(mole fraction, %) in reciprocating mode at room temperature(20 ℃). Hot-rolled alloys with B2 phase exhibit lower coefficient of friction and w...We link different microstructures to tribological behaviors of Ti-50.8 Ni(mole fraction, %) in reciprocating mode at room temperature(20 ℃). Hot-rolled alloys with B2 phase exhibit lower coefficient of friction and wear rate compared to the ones with B19?. Stress-induced martensitic transformation occurs during sliding. However, multi-pass hot rolling weakens the wear resistance. In this study, microstructures were characterized through electron backscatter diffraction and transmission electron microscopy(EBSD/TEM). From the concept of energy conservation, the effects of weak intensity of hot-rolled textures on the wear resistance are minimal. Based on the result that the alloy with a higher portion of coincidence site lattice boundaries shows lower martensitic start transformation temperature in the DSC curves than that with higher KAM values, the delay on B2-B19? transformation from {112}B2 twins outweighs dislocations. Moreover, widely distributed small-angle grain boundaries owing to dynamic recovery improve the wear resistance effectively compared to those that are well-recrystallized.展开更多
Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and...Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and efficient introduction of low energy coincidence site lattice boundaries through grain boundary engineering resulted in an apparent improvement of the intergranular stress corrosion crack resistance of austenite stainless steel.展开更多
The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces...The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.展开更多
The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by el...The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by electron backscatter diffraction(EBSD)analysis,and its optimization was mainly attributed to annealing twins(Σ3)and twins related to boundaries formed during thermal-mechanical processing(TMP).Through TMP of 5%cold rolling and subsequent annealing at 1150℃for 5 min,the proportion of lowΣcoincidence site lattice(CSL)grain boundaries of the Inconel 625 can be enhanced to about 35.8%which mainly were ofΣ3^(n)(n=1,2,3)type.There is an increase of 24.8%compared with the solution-treated sample,and simultaneously the large-size highly-twinned grain-cluster microstructure is formed.The grain-cluster is mainly composed ofΣ3-Σ3-Σ9 orΣ3-Σ9-Σ27 triple junctions,which is mainly caused by boundary reactions during grain growth.Among them,the IGC resistance ofΣ3 grain boundaries,Σ9 grain boundaries and random grain boundaries is sequentially weakened.With the increase of the lowΣCSL grain boundary fraction,the IGC resistance of Inconel 625 improves.The essential reason is the amount ofΣ3 boundaries interrupting the random boundary network increases and the large grain-cluster arrests the penetration of IGC.展开更多
Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE tre...Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.展开更多
Hot compression tests were conducted in a temperature range of 800--1100 ℃and strain rate range of 0. 1- 10 s^-1 using a Gleeble 3500 thermomechanical simulator to investigate the influence of hot deformation paramet...Hot compression tests were conducted in a temperature range of 800--1100 ℃and strain rate range of 0. 1- 10 s^-1 using a Gleeble 3500 thermomechanical simulator to investigate the influence of hot deformation parameters (temperatures, strain rates and strains) on the grain boundary network evolution of a new grade Fe-Cr-Ni superaustenitic stainless steel. The results showed that a dominant effect of deformed temperature is ∑3^n (n = 0, 1, 2, 3) boundaries population increased with decreasing temperature, while they first increased and then reduced with in- creasing strain and strain rate. Interestingly, besides E3n (n = 1, 2, 3) twin grain boundaries, some El boundaries could interrupt grain boundaries network effectively, which enhance material performances. But they are scarcely re- ported. The misorientation of some segments LAGBs in the deformed microstructure (pancaked grains) increased and slid to high angle grain boundaries with increasing the fraction of reerystallized grains during hot deformation.展开更多
Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austeni...Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.展开更多
The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-n...The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.展开更多
A calculation method based on a combination of Dg parallelism rule, good matching site(GMS) analysis, CSL/DSCL(coincidence site lattice/displacement shift complete lattice) and the O-lattice theory has been applie...A calculation method based on a combination of Dg parallelism rule, good matching site(GMS) analysis, CSL/DSCL(coincidence site lattice/displacement shift complete lattice) and the O-lattice theory has been applied to interpret the observation of the habit plane(HP) of the d precipitates and the linear defects in the HP in an Inconel 718 superalloy. The small scattering in the HP orientation around an ideal rational plane is interpreted by the existence of a mixture of two types of steps with different heights and inclinations. These steps play a significant role to enhance the degree of matching in the HP. They are associated with secondary dislocations, with Burgers vectors of 1/6 (1 1 2)y/1/3(0 0 1), and with a direction parallel to a near-invariant line along (110)y. The spacing of the secondary dislocations projected on the terrace plane is around 6.3 nm. The calculated dislocation structure is in good agreement with the observation.展开更多
The optimization of hot compression technique of as-cast 0Cr23Ni13 stainless steel at high strain rate was discussed,and its corrosion resistance was evaluated after hot compression treatment experimentally.By adjusti...The optimization of hot compression technique of as-cast 0Cr23Ni13 stainless steel at high strain rate was discussed,and its corrosion resistance was evaluated after hot compression treatment experimentally.By adjusting the dynamic recrys-tallization(DRX)ratio of 0Cr23Nil3 stainless steel during hot pressing,the content of low Σ coincident site lattice(ΣCSL)grain boundaries is increased,and the grain orientation is optimized.The results show that ferrite and austenite are completely recrystallized at 1050 and 1150℃,respectively.The number of grains in the<111>and<101>directions increases significantly,the corrosion potential increases,and the corrosion current density decreases,which will signifi-cantly improve the corrosion resistance of 0Cr23Nil3 stainless steel.After the optimization of grain boundary distribution,corrosion resistance is noticeably improved due to the existence of lowΣCSL boundaries.The interference effect of lowΣCSL grain boundary on random grain boundary network becomes intense with the increase in DRX ratio,which is the fundamental measure to improve the corrosion resistance.展开更多
文摘Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries.
基金financially supported by the National Natural Science Foundation of China-Aerospace Science and Technology Corporation of China Aerospace Advanced Manufacturing Technology Research Joint Fund (U1737204)the National Natural Science Foundation of China (51673205)the Key Research Program of Frontier Science,Chinese Academy of Sciences (QYZDJ-SSW-SLH056)。
文摘We link different microstructures to tribological behaviors of Ti-50.8 Ni(mole fraction, %) in reciprocating mode at room temperature(20 ℃). Hot-rolled alloys with B2 phase exhibit lower coefficient of friction and wear rate compared to the ones with B19?. Stress-induced martensitic transformation occurs during sliding. However, multi-pass hot rolling weakens the wear resistance. In this study, microstructures were characterized through electron backscatter diffraction and transmission electron microscopy(EBSD/TEM). From the concept of energy conservation, the effects of weak intensity of hot-rolled textures on the wear resistance are minimal. Based on the result that the alloy with a higher portion of coincidence site lattice boundaries shows lower martensitic start transformation temperature in the DSC curves than that with higher KAM values, the delay on B2-B19? transformation from {112}B2 twins outweighs dislocations. Moreover, widely distributed small-angle grain boundaries owing to dynamic recovery improve the wear resistance effectively compared to those that are well-recrystallized.
文摘Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and efficient introduction of low energy coincidence site lattice boundaries through grain boundary engineering resulted in an apparent improvement of the intergranular stress corrosion crack resistance of austenite stainless steel.
基金supported from the National Natural Science Foundation of China (Grant No. 1171088)the National Basic Research Program of China (Grant No. 12CB619403) from Chinese Ministry of Science and Technology
文摘The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.
基金Funded in part by the National Key Research and Development Program of China(No.2017YFA07007003)the National Natural Science Foundation of China(No.51661019)+1 种基金the Major Projects of Science and Technology in Gansu Province(No.145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology。
文摘The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by electron backscatter diffraction(EBSD)analysis,and its optimization was mainly attributed to annealing twins(Σ3)and twins related to boundaries formed during thermal-mechanical processing(TMP).Through TMP of 5%cold rolling and subsequent annealing at 1150℃for 5 min,the proportion of lowΣcoincidence site lattice(CSL)grain boundaries of the Inconel 625 can be enhanced to about 35.8%which mainly were ofΣ3^(n)(n=1,2,3)type.There is an increase of 24.8%compared with the solution-treated sample,and simultaneously the large-size highly-twinned grain-cluster microstructure is formed.The grain-cluster is mainly composed ofΣ3-Σ3-Σ9 orΣ3-Σ9-Σ27 triple junctions,which is mainly caused by boundary reactions during grain growth.Among them,the IGC resistance ofΣ3 grain boundaries,Σ9 grain boundaries and random grain boundaries is sequentially weakened.With the increase of the lowΣCSL grain boundary fraction,the IGC resistance of Inconel 625 improves.The essential reason is the amount ofΣ3 boundaries interrupting the random boundary network increases and the large grain-cluster arrests the penetration of IGC.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 51571058)。
文摘Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.
基金Item Sponsored by National Basic Research Program of China(2007CB209800)
文摘Hot compression tests were conducted in a temperature range of 800--1100 ℃and strain rate range of 0. 1- 10 s^-1 using a Gleeble 3500 thermomechanical simulator to investigate the influence of hot deformation parameters (temperatures, strain rates and strains) on the grain boundary network evolution of a new grade Fe-Cr-Ni superaustenitic stainless steel. The results showed that a dominant effect of deformed temperature is ∑3^n (n = 0, 1, 2, 3) boundaries population increased with decreasing temperature, while they first increased and then reduced with in- creasing strain and strain rate. Interestingly, besides E3n (n = 1, 2, 3) twin grain boundaries, some El boundaries could interrupt grain boundaries network effectively, which enhance material performances. But they are scarcely re- ported. The misorientation of some segments LAGBs in the deformed microstructure (pancaked grains) increased and slid to high angle grain boundaries with increasing the fraction of reerystallized grains during hot deformation.
基金the financial supports from the National Natural Science Foundation of China (No.51505416)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province (No.E2017203041)+1 种基金the Post-Doctoral Research Project of Hebei Province (No.B2016003029)the Foundation for Young Scholars in Yanshan University(No.14LGA004)
文摘Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 52171108)the Fundamental Research Funds for the Central Universities(Grant Nos.N2002014 and N2202011)。
文摘The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51671111)the National Key Research and Development Program of China (Grant No. 2016YFB0701304)
文摘A calculation method based on a combination of Dg parallelism rule, good matching site(GMS) analysis, CSL/DSCL(coincidence site lattice/displacement shift complete lattice) and the O-lattice theory has been applied to interpret the observation of the habit plane(HP) of the d precipitates and the linear defects in the HP in an Inconel 718 superalloy. The small scattering in the HP orientation around an ideal rational plane is interpreted by the existence of a mixture of two types of steps with different heights and inclinations. These steps play a significant role to enhance the degree of matching in the HP. They are associated with secondary dislocations, with Burgers vectors of 1/6 (1 1 2)y/1/3(0 0 1), and with a direction parallel to a near-invariant line along (110)y. The spacing of the secondary dislocations projected on the terrace plane is around 6.3 nm. The calculated dislocation structure is in good agreement with the observation.
基金This research was financially supported by the Science and Technology Major Project of Gansu Province(Grant No.17ZD2GB012)the City Key Research and Development Plan of Jiayuguan(Grant Nos.20-16).
文摘The optimization of hot compression technique of as-cast 0Cr23Ni13 stainless steel at high strain rate was discussed,and its corrosion resistance was evaluated after hot compression treatment experimentally.By adjusting the dynamic recrys-tallization(DRX)ratio of 0Cr23Nil3 stainless steel during hot pressing,the content of low Σ coincident site lattice(ΣCSL)grain boundaries is increased,and the grain orientation is optimized.The results show that ferrite and austenite are completely recrystallized at 1050 and 1150℃,respectively.The number of grains in the<111>and<101>directions increases significantly,the corrosion potential increases,and the corrosion current density decreases,which will signifi-cantly improve the corrosion resistance of 0Cr23Nil3 stainless steel.After the optimization of grain boundary distribution,corrosion resistance is noticeably improved due to the existence of lowΣCSL boundaries.The interference effect of lowΣCSL grain boundary on random grain boundary network becomes intense with the increase in DRX ratio,which is the fundamental measure to improve the corrosion resistance.