The accurate prediction of coke quality is important for the selection and valuation of metallurgical coals. Whilst many prediction models exist, they tend to perform poorly for coals beyond which the model was develo...The accurate prediction of coke quality is important for the selection and valuation of metallurgical coals. Whilst many prediction models exist, they tend to perform poorly for coals beyond which the model was developed. Further, these models general fail to directly account for physical interactions occurring between the blend components, through the assumption that the aggregate properties of the blend are suitably representative of the overall behavior of the blend. To study this assumption, a parameter termed the vitrinite distribution category was introduced to directly account for the distribution of one of these commonly aggregated parameters, the vitrinite reflectance. The introduction of this parameter in a regression model for coke quality prediction improved the model fit. The vitrinite distribution category was demonstrated to provide new information about coal blending decisions, and was found to be capable of providing insight into the behavior of different blending structures. Residual analysis was applied to explore the behavior of the coke quality prediction model, with the vitrinite distribution category found to explain more than just the presence or absence of coals within a blend. This work provides the foundation of future studies in examining coal blending decisions, with the proposed parameter having the potential to be applied as part of a coke quality prediction model to optimize coal blending decisions.展开更多
An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment...An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment for the delayed coking process. Adaptive SFPC is used to improve the performance of temperature control in normal operation. A simplified nonlinear model on the basis of first principles of the furnace is developed to obtain a state space model by linearization. Taking advantage of the nonlinear model, an online model adapting method is presented to accommodate the dynamic change of process characteristics because of tube coking and load changes. To compensate the large inverse response of outlet temperature resulting from the sudden increase of injected steam of a particular velocity to tubes, a monitoring method and an expert control scheme based on heat balance calculation are proposed. Industrial implementation shows the effectiveness and feasibility of the proposed control strategy.展开更多
文摘The accurate prediction of coke quality is important for the selection and valuation of metallurgical coals. Whilst many prediction models exist, they tend to perform poorly for coals beyond which the model was developed. Further, these models general fail to directly account for physical interactions occurring between the blend components, through the assumption that the aggregate properties of the blend are suitably representative of the overall behavior of the blend. To study this assumption, a parameter termed the vitrinite distribution category was introduced to directly account for the distribution of one of these commonly aggregated parameters, the vitrinite reflectance. The introduction of this parameter in a regression model for coke quality prediction improved the model fit. The vitrinite distribution category was demonstrated to provide new information about coal blending decisions, and was found to be capable of providing insight into the behavior of different blending structures. Residual analysis was applied to explore the behavior of the coke quality prediction model, with the vitrinite distribution category found to explain more than just the presence or absence of coals within a blend. This work provides the foundation of future studies in examining coal blending decisions, with the proposed parameter having the potential to be applied as part of a coke quality prediction model to optimize coal blending decisions.
基金the State Key Development Program for Basic Research of China(2002CB312200)the National High Technology Research and Development Program of China(2007AA04Z193)
文摘An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment for the delayed coking process. Adaptive SFPC is used to improve the performance of temperature control in normal operation. A simplified nonlinear model on the basis of first principles of the furnace is developed to obtain a state space model by linearization. Taking advantage of the nonlinear model, an online model adapting method is presented to accommodate the dynamic change of process characteristics because of tube coking and load changes. To compensate the large inverse response of outlet temperature resulting from the sudden increase of injected steam of a particular velocity to tubes, a monitoring method and an expert control scheme based on heat balance calculation are proposed. Industrial implementation shows the effectiveness and feasibility of the proposed control strategy.