It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and beha...It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.展开更多
The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for remo...The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for removal of basic nitrogen compounds by EIL was studied using coker diesel as the feedstock. Experimental results showed that the EIL (TEAB-Mal) exhibited a good denitrogenation performance, leading to a 93.6% of basic N-removal efficiency under reaction conditions covering: a temperature of 30 ℃, an EIL to oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 120 min, while the basic nitrogen content in diesel dropped from 580 μg/g to 37 gg/g. In addition, the efficiency for extraction of basic N-compounds could still reach 62.9% at am EIL/oil mass ratio of 1:7 after four recycles of the EIL.展开更多
Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine i...Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.展开更多
The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in
Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and p...Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and protect the catalyst. In this work, we studied the hydrodesulfurization (HDS) of CGO in a slurry reactor. All the experiments were carried out in an autoclave using a NiMo/A1203 catalyst at reaction temperature 340℃- 400℃, pressure 6-10 MPa, and stirring speed 800 r. mn^-1, with hydrogen-to-oil ratio in the range of 500-1500. The effects of the operating parameters on the desulfurization ratio were investigated and discussed. A macro reaction kinetic model was established for the HDS of CGO in the slurry reactor.展开更多
The nitrogen distribution in products during catalytic cracking of coker gas oil(CGO) was investigated in a laboratory two-staged riser catalytic cracking(TSRFCC) experimental unit with Kelamayi CGO as feedstock.The r...The nitrogen distribution in products during catalytic cracking of coker gas oil(CGO) was investigated in a laboratory two-staged riser catalytic cracking(TSRFCC) experimental unit with Kelamayi CGO as feedstock.The results showed that operation parameters,such as reaction temperature,catalyst-oil ratio and residence time,all could significantly affect the nitrogen distribution in the products.The nitrogen in the gas product and gasoline fractions decreased with the increase of reaction temperature and/or residence time,which could promote the thermal cracking.However,the nitrogen in gas product and gasoline fractions increased with the increase of catalyst-oil ratio,which could mainly enhance the catalytic cracking.On the whole,after CGO conversion,about 50% of the total nitrogen could produce nitrogen-containing coke over catalyst,and 20% of the total nitrogen remained in heavy oil,while only a little of the total nitrogen could be transfered into diesel,gasoline and gas products.展开更多
以过氧化氢-有机酸体系作氧化剂,采用氧化反应与溶剂萃取相结合的方法,对焦化柴油进行了氧化脱氮研究。考察了不同的氧化体系、氧化温度、氧化时间、氧化剂油比和萃取剂、萃取温度、萃取时间、萃取剂油比对焦化柴油中氮化物脱除效果的...以过氧化氢-有机酸体系作氧化剂,采用氧化反应与溶剂萃取相结合的方法,对焦化柴油进行了氧化脱氮研究。考察了不同的氧化体系、氧化温度、氧化时间、氧化剂油比和萃取剂、萃取温度、萃取时间、萃取剂油比对焦化柴油中氮化物脱除效果的影响。结果表明,最适宜的氧化脱氮条件为:过氧化氢-甲酸作为氧化体系,氧化温度为70℃,氧化时间为1 m in,剂油体积比为0.24,V(过氧化氢)/V(有机酸)=0.5。萃取实验条件为:在室温条件下,萃取剂油比为0.8,搅拌5 m in。精制后,柴油回收率达93.33%,总氮脱除率为94.69%。展开更多
文摘It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.
基金the financial support from the Doctoral Funds of Liaoning Provincial Natural Science Foundation(201601323)
文摘The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for removal of basic nitrogen compounds by EIL was studied using coker diesel as the feedstock. Experimental results showed that the EIL (TEAB-Mal) exhibited a good denitrogenation performance, leading to a 93.6% of basic N-removal efficiency under reaction conditions covering: a temperature of 30 ℃, an EIL to oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 120 min, while the basic nitrogen content in diesel dropped from 580 μg/g to 37 gg/g. In addition, the efficiency for extraction of basic N-compounds could still reach 62.9% at am EIL/oil mass ratio of 1:7 after four recycles of the EIL.
基金CHGO sample was provided by Synrude Canada Ltd.Plant.
文摘Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.
文摘The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in
文摘Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and protect the catalyst. In this work, we studied the hydrodesulfurization (HDS) of CGO in a slurry reactor. All the experiments were carried out in an autoclave using a NiMo/A1203 catalyst at reaction temperature 340℃- 400℃, pressure 6-10 MPa, and stirring speed 800 r. mn^-1, with hydrogen-to-oil ratio in the range of 500-1500. The effects of the operating parameters on the desulfurization ratio were investigated and discussed. A macro reaction kinetic model was established for the HDS of CGO in the slurry reactor.
文摘The nitrogen distribution in products during catalytic cracking of coker gas oil(CGO) was investigated in a laboratory two-staged riser catalytic cracking(TSRFCC) experimental unit with Kelamayi CGO as feedstock.The results showed that operation parameters,such as reaction temperature,catalyst-oil ratio and residence time,all could significantly affect the nitrogen distribution in the products.The nitrogen in the gas product and gasoline fractions decreased with the increase of reaction temperature and/or residence time,which could promote the thermal cracking.However,the nitrogen in gas product and gasoline fractions increased with the increase of catalyst-oil ratio,which could mainly enhance the catalytic cracking.On the whole,after CGO conversion,about 50% of the total nitrogen could produce nitrogen-containing coke over catalyst,and 20% of the total nitrogen remained in heavy oil,while only a little of the total nitrogen could be transfered into diesel,gasoline and gas products.
文摘以过氧化氢-有机酸体系作氧化剂,采用氧化反应与溶剂萃取相结合的方法,对焦化柴油进行了氧化脱氮研究。考察了不同的氧化体系、氧化温度、氧化时间、氧化剂油比和萃取剂、萃取温度、萃取时间、萃取剂油比对焦化柴油中氮化物脱除效果的影响。结果表明,最适宜的氧化脱氮条件为:过氧化氢-甲酸作为氧化体系,氧化温度为70℃,氧化时间为1 m in,剂油体积比为0.24,V(过氧化氢)/V(有机酸)=0.5。萃取实验条件为:在室温条件下,萃取剂油比为0.8,搅拌5 m in。精制后,柴油回收率达93.33%,总氮脱除率为94.69%。