期刊文献+
共找到777,475篇文章
< 1 2 250 >
每页显示 20 50 100
Frontogenesis and Frontolysis of a Cold Filament Driven by the Cross-Filament Wind and Wave Fields Simulated by a Large Eddy Simulation 被引量:1
1
作者 Guojing LI Dongxiao WANG +3 位作者 Changming DONG Jiayi PAN Yeqiang SHU Zhenqiu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期509-528,共20页
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w... The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis. 展开更多
关键词 cold filament FRONTOGENESIS FRONTOLYSIS large eddy simulation
下载PDF
PHD17 acts as a target of miR1320 to negatively control cold tolerance via JA-activated signaling in rice 被引量:1
2
作者 Yan Wang Yang Shen +6 位作者 Weifeng Dong Xiaoxi Cai Junkai Yang Yue Chen Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第5期1447-1458,共12页
Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 neg... Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 negatively regulated cold tolerance in rice seedlings as a cleavage target of miR1320.PHD17 expression was greatly induced by cold stress,and was down-regulated by miR1320 overexpression and up-regulated by miR1320 knockdown.Through 5'RACE and dual luciferase assays,we found that miR1320 targeted and cleaved the 3'UTR region of PHD17.PHD17 was a nuclearlocalized protein and acted as a transcriptional activator in yeast.PHD17 overexpression reduced cold tolerance of rice seedlings,while knockout of PHD17 increased cold tolerance,partially via the CBF cold signaling.By combining transcriptomic and physiological analyses,we demonstrated that PHD17 modulated ROS homeostasis and flavonoid accumulation under cold stress.K-means clustering analysis revealed that differentially expressed genes in PHD17 transgenic lines were significantly enriched in the jasmonic acid(JA)biosynthesis pathway,and expression of JA biosynthesis and signaling genes was verified to be affected by PHD17.Cold stress tests applied with MeJA or IBU(JA synthesis inhibitor)further suggested the involvement of PHD17 in JA-mediated cold signaling.Taken together,our results suggest that PHD17 acts downstream of miR1320 and negatively regulates cold tolerance of rice seedlings through JA-mediated signaling pathway. 展开更多
关键词 RICE cold tolerance PHD protein miR1320 JA signaling
下载PDF
Effect of β-Glucan (Angel Yeast) Compared to a Placebo on Cold and Flu Incidence and Symptoms in an Adult Population—A Double Blind, Randomised Controlled Trial
3
作者 David Briskey Haibo Zhang +1 位作者 Zhixian Chen Amanda Rao 《Food and Nutrition Sciences》 CAS 2024年第6期484-497,共14页
Background: 1-3, 1-6 β-glucan derived from Baker’s yeast (Saccharomyces cerevisiae) has been widely studied for its immune stimulatory capabilities and safety. Previous studies found β-glucan to have efficacy at re... Background: 1-3, 1-6 β-glucan derived from Baker’s yeast (Saccharomyces cerevisiae) has been widely studied for its immune stimulatory capabilities and safety. Previous studies found β-glucan to have efficacy at reducing incidence of URTIs as well as being a low risk for negative side effects. The current study aimed to examine the effects of yeast β-glucan (Angel Yeast) on cold and flu incidences and symptoms in healthy adults. Methods: Two hundred and thirty-one males and females aged 18 to 65 years old supplemented with either β-glucan or a placebo for 3-months. Participants completed a general health questionnaire every 4 weeks and in addition, if participants experienced any cold or flu symptoms, these were recorded daily (along with severity) until resolved or up to 2 weeks. Results: Supplementation with β-glucan reduced the self-reported severity of sore throats and improved sleep quality compared to the placebo group. Conclusions: Yeast β-glucan supplementation appears to be able to help reduce certain symptoms experienced during a cold or flu episode and is safe and well tolerated. 展开更多
关键词 BETA-GLUCAN cold FLU Baker’s Yeast
下载PDF
The UDP-glycosyltransferase OsUGT706D2 positively regulates cold and submergence stress tolerance in rice
4
作者 Qing Liu Lanlan Zhang +12 位作者 Shuwei Lyu Hang Yu Wenjie Huang Liqun Jiang Jing Zhang Bingrui Sun Xingxue Mao Pingli Chen Junlian Xing Wenfeng Chen Zhilan Fan Shijuan Yan Chen Li 《The Crop Journal》 SCIE CSCD 2024年第3期732-742,共11页
In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706... In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706D2 positively regulated the biosynthesis of tricin-4’-O-(syringyl alcohol)ether-7-O-glucoside at both the transcriptional and metabolic levels.OsUGT706D2 mediated cold and submergence tolerance by modulating the expression of stress-responsive genes as well as the abscisic acid(ABA)signaling pathway.Gain of function of OsUGT706D2 increased cold and submergence tolerance and loss of function of OsUGT706D2 reduced cold tolerance.ABA positively regulated OsUGT706D2-mediated cold tolerance but reduced submergence tolerance.These findings suggest the potential use of OsUGT706D2 for improving abiotic stress tolerance in rice. 展开更多
关键词 UDP-glycosyltransferase RICE cold tolerance Submergence tolerance ABA
下载PDF
Boosting thermoelectric efficiency of Ag_(2)Se through cold sintering process with Ag nano-precipitate formation
5
作者 Dejwikom Theprattanakorn Thanayut Kaewmaraya Supree Pinitsoontorn 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2760-2769,共10页
Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ... Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature. 展开更多
关键词 THERMOELECTRIC silver selenide CHALCOGENIDE cold sintering process nano-precipitate
下载PDF
Melatonin mitigates cold-induced damage to pepper seedlings by promoting redox homeostasis and regulating antioxidant profiling
6
作者 Muhammad Ahsan Altaf Yuanyuan Hao +9 位作者 Huangying Shu Weiheng Jin Chuhao Chen Lin Li Yu Zhang Muhammad Ali Mumtaz Huizhen Fu Shanhan Cheng Guopeng Zhu Zhiwei Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期532-544,共13页
This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of... This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of the most important environmental factors that restrict plant growth and yield. Pepper(Capsicum annuum L.) is a valuable commercial crop, highly sensitive to CS. Thus, identifying an efficient strategy to mitigate cold damage is critical for long-term pepper production. For this purpose, the roots of pepper seedlings were pretreated with ME(5 μmol · L^(-1)) and exposed to CS for 7 d. The results indicated that CS suppressed pepper growth, hampered photosynthetic capacity, and damaged root architecture in pepper plants. In contrast, the production of reactive oxygen species(ROS), malondialdehyde(MDA), electrolyte leakage(EL), proline, and soluble sugars were enhanced in plants under CS. ME(5 μmol · L^(-1)) pretreatment reduced the negative effects of CS by recovering plant growth, root traits, gas exchange elements, and pigment molecules compared to CS control treatment. Furthermore, ME application efficiently reduced oxidative stress markers [hydrogen peroxide(H_(2)O_(2)), superoxide ion(O_(2)^(·-)), EL, and MDA] while increasing proline and soluble sugar content in pepper leaves. ME application combined with CS further increased antioxidant enzymes and related gene expression. Collectively, our results confirmed the mitigating potential of ME supplementation for CS by maintaining pepper seedling growth,improving the photosynthesis apparatus, regulating pigments, and osmolyte content. 展开更多
关键词 PEPPER MELATONIN cold stress Antioxidant enzyme Root trait
下载PDF
Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs
7
作者 Wei He Xinyu Liu +4 位作者 Ye Feng Hongwei Ding Haoyang Sun Zhongyu Li Baoming Shi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1669-1687,共19页
Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy met... Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes. 展开更多
关键词 Apoptosis cold temperature Energy stress FAT Glucolipid metabolism Mitochondrial homeostasis
下载PDF
Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus
8
作者 Jianjun Wang Yanan Shao +4 位作者 Xin Yang Chi Zhang Yuan Guo Zijin Liu Mingxun Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1864-1878,共15页
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi... Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation. 展开更多
关键词 LuSAD oleic acid cold tolerance drought tolerance Linum usitatissimum Brassica napus
下载PDF
Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma
9
作者 Zhiming Liang Tianyi Li +9 位作者 Holden Chi Joseph Ziegelbauer Kai Sun Ming Wang Wei Zhang Tuo Liu Yang-Tse Cheng Zonghai Chen Xiaohong Gayden Chunmei Ban 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期28-33,共6页
Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents... Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs. 展开更多
关键词 cold plasma deposition lithium-ion battery solvent-free manufacturing
下载PDF
Characteristics and Mechanisms of Persistent Wet–Cold Events with Different Cold-air Paths in South China
10
作者 Xiaojuan SUN Li CHEN +1 位作者 Chuhan LU Panxing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1171-1183,共13页
We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part o... We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary. 展开更多
关键词 persistent wet–cold events cold-air paths circulation characteristics water vapor
下载PDF
Low-condensation diesel use contributes to winter haze in cold regions of China
11
作者 Weiwei Song Mengying Wang +7 位作者 Yixuan Zhao Yu Bo Wanying Yao Ruihan Chen Xianshi Wang Xiaoyan Wang Chunhui Li Kebin He 《Environmental Science and Ecotechnology》 SCIE 2024年第6期226-232,共7页
The application of low-condensation diesel in cold regions with extremely low ambient temperatures(−14 to−29°C)has enabled the operation of diesel vehicles.Still,it may contribute to heavy haze pollution in cold ... The application of low-condensation diesel in cold regions with extremely low ambient temperatures(−14 to−29°C)has enabled the operation of diesel vehicles.Still,it may contribute to heavy haze pollution in cold regions during winter.Here we examine pollutant emissions from low-condensation diesel in China.We measure the emissions of elemental carbon(EC),organic carbon(OC),and elements,including heavy metals such as arsenic(As).Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel,respectively.Indicators of vehicular sources,including EC,As,lead(Pb),cadmium(Cd),chromium(Cr),nickel(Ni),and manganese(Mn),increased by approximately 20.2-162.5%when using low-condensation diesel.Seasonal variation of vehicular source indicators,observed at road site ambient environments revealed the enhancement of PM2.5 pollution by the application of low-condensation diesel in winter.These findings suggest that−35#diesel,a low-cetane index diesel,may enhance air pollution in winter,according to a dynamometer test conducted in laboratory.It raises questions about whether higher emissions are released if−35#diesel is applied to running vehicles in real-world cold ambient environments. 展开更多
关键词 Low condensation diesel Carbonaceous matterHeavy metal DYNAMOMETER cold regions
原文传递
Characteristic and optimization of ferrite-rich sulfoaluminate-based composite cement suitable for cold region tunnels
12
作者 PENG You LI Li +5 位作者 TAN Xian-jun QIU Xin ZHENG Pei-chao XIE Jun CHEN Wei-zhong REZIWANGULI Sha-ta-er 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2794-2809,共16页
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia... To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels. 展开更多
关键词 ferrite-rich sulfoaluminate cement cold zone early strength synergist mechanical property MICRO-STRUCTURE pumped storage power
下载PDF
Effects ofγ-aminobutyric Acid on Nitrogen Metabolism in Roots and Leaves of Cold-stressed Rice(Oryza sativa L.)During Early Vegetative Growth
13
作者 Jia Yan Gong Weibin +9 位作者 Ma Huimiao Liu Ge Zhang Can Liu Aixin Han Yiming Dang Yuxiang Bai Xu Wang Haixing Wu Yulong Xin Junying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第3期1-19,共19页
Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.... Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt. 展开更多
关键词 cold stress γ-aminobutyric acid RICE nitrogen metabolism
下载PDF
Bonding enhancement of cold rolling TA1 P-Ti/AA6061 composite plates via surface oxidation treatment
14
作者 Lun FU Bin YANG +2 位作者 Yun-chang GUO Chao YU Hong XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2864-2880,共17页
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti... TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%. 展开更多
关键词 TA1 P-Ti/AA6061 composite plate oxidation treatment annealing treatment cold roll bonding
下载PDF
Multi-Objective Low Carbon Vehicle Routing for Cold Chain Distribution with Customer Time Loss Aversion
15
作者 Xiufeng LI Zhen ZHANG 《Journal of Systems Science and Information》 CSCD 2024年第5期590-623,共34页
The elevated refrigeration expenses linked to cold chain distribution contribute to increased overall logistics costs and carbon emissions.Concurrently,the sensitivity of consumers to delivery delays also impacts the ... The elevated refrigeration expenses linked to cold chain distribution contribute to increased overall logistics costs and carbon emissions.Concurrently,the sensitivity of consumers to delivery delays also impacts the design of cold chain distribution operations.This paper considers the logistics costs of cold chain,consumer time loss aversion,and the efficiency of low-carbon distribution to construct a multi-objective cold chain vehicle routing problem.It combines a decomposition-based multi-objective solution algorithm and fruit fly optimization algorithm to solve the proposed model,and validates the algorithm and model through a large number of numerical experiments.Firstly,our computations of the C-metric,IGD value,Hypervolumn,and CPU time demonstrate that the algorithm employed in this study has yielded notable advantages in terms of convergence and the overall performance of the non-dominated solutions.Secondly,we find that increasing logistics satisfaction requires a significant investment in logistics costs,thus requiring a delicate balance between logistics expenditure and service advantages.Finally,we used a typical example to analyze the size of different cost modules in cold chain distribution and find that vehicles can optimize their routes without needing to make extensive diversions to reach distant customers,ultimately leading to reduced fuel consumption and carbon emissions.Besides,the traditional assumption that a higher utilization of logistics vehicles results in increased carbon emissions and fuel usage is not universally valid.Our research contributes to the current balance between cold chain costs and consumer satisfaction in cold chain distribution.Additionally,leveraging multi-objective algorithm design,we provide feasible solutions for current cold chain delivery operations.Further,by incorporating consumer time loss aversion model,we aid in understanding the impact of consumer behavior on the design of cold chain delivery solutions. 展开更多
关键词 MULTI-OBJECTIVE low carbon vehicle routing cold chain distribution customer time loss aversion
原文传递
Evaluation of Cold Resistance and Semi-lethal Low Temperature(LT_(50))of Nine Pear Cultivars
16
作者 Huan LIU Lijuan GAO +3 位作者 Jintao XU Minghui JI Longfei LI Baofeng HAO 《Asian Agricultural Research》 2024年第6期45-47,共3页
[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cul... [Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars. 展开更多
关键词 PEAR cold resistance Semi-lethal TEMPERATURE (LT_(50)) Low TEMPERATURE
下载PDF
Therapeutic effect of San Bi Tang combined with glucosamine sulfate capsules in cold-dampness-type knee osteoarthritis
17
作者 Hui-Ying Ni Yao-Ping Zhang Xiao-Feng Zhang 《World Journal of Clinical Cases》 SCIE 2024年第19期3854-3865,共12页
BACKGROUND Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease,but its pathogenesis is not fully understood,and its clinical treatment has limitations.Glucosamine sulfate capsules are co... BACKGROUND Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease,but its pathogenesis is not fully understood,and its clinical treatment has limitations.Glucosamine sulfate capsules are commonly used for treating arthritis,and San Bi Tang is a classic formula of traditional Chinese medicine(TCM)that has the effects of warming yang,dispelling dampness,relaxing muscles,and activating collaterals.This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects.AIM To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis.METHODS A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each.The control group received only treatment with glucosamine sulfate capsules,while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk.The patients’knee joint functions,liver and kidney function indicators,adverse reactions,and vital signs were evaluated and analyzed using SPSS 26.0 software.RESULTS Before treatment,the two groups’genders,ages,and scores were not significantly different,indicating comparability.Both groups’scores improved after treatment,which could indicate pain and knee joint function improvement,but the test group had better scores.The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher.Before and after treatment,there were no abnormalities in the patients’liver and kidney function indicators.CONCLUSION The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety. 展开更多
关键词 San Bi Tang Combination therapy Knee osteoarthritis Aggravated by cold Glucosamine sulfate capsules
下载PDF
Cold snare polypectomy:A closer look at the efficacy and limitations for polyps 10-20 mm in size
18
作者 Louis A Chaptini Sarah Jalloul Karam Karam 《World Journal of Gastrointestinal Endoscopy》 2024年第8期445-450,共6页
Current guidelines recommend cold snare polypectomy for polyps less than 10 mm in size.Conversely,endoscopic mucosal resection is still the preferred technique for larger polyps.Concerns regarding cold snare polypecto... Current guidelines recommend cold snare polypectomy for polyps less than 10 mm in size.Conversely,endoscopic mucosal resection is still the preferred technique for larger polyps.Concerns regarding cold snare polypectomy for larger polyps revolve around the difficulty in conducting en-bloc resection(resulting in piecemeal removal),and the potential for local residual polyp tissue and a high rate of recurrence.On the other hand,cold snare technique has the advantages of shortening procedure time,reducing delayed bleeding risks and lowering cost of treatment.Numerous ongoing and recent studies are focused on evaluating the risks and benefits of this technique for polyps larger than 10 mm,with the goal of providing clear guidelines in the near future.The aim of this editorial is to provide our readers with an overview regarding this subject and the latest developments surrounding it. 展开更多
关键词 Colon polyp POLYPECTOMY cold snare polypectomy Hot snare polypectomy Endoscopic mucosal resection Sessile serrated lesion ADENOMA
下载PDF
土石坝护坡冻胀破坏水-热-力耦合数值模拟研究 被引量:1
19
作者 李卓 姜鑫 +3 位作者 张继勋 赵昱 王虞清 方艺翔 《水利水运工程学报》 CSCD 北大核心 2024年第3期136-145,共10页
针对寒区土石坝护坡普遍存在的冻胀破坏问题,选取寒区某土石坝工程为研究对象,结合土石坝工程特点,建立考虑水-热-力耦合作用的有限元计算模型。研究护坡在库水位和坝体填土水分迁移作用下冻胀破坏全过程,分析土石坝温度场、水分场和位... 针对寒区土石坝护坡普遍存在的冻胀破坏问题,选取寒区某土石坝工程为研究对象,结合土石坝工程特点,建立考虑水-热-力耦合作用的有限元计算模型。研究护坡在库水位和坝体填土水分迁移作用下冻胀破坏全过程,分析土石坝温度场、水分场和位移场的变化规律,并将位移场有限元计算结果与实测冻胀变形资料进行对比,验证有限元计算结果。研究结果表明:冻胀作用对坝坡影响深度约为2 m,坝坡浅层0~2 m范围的温度变化受外界气温影响较大,坝体内部温度相对坝坡浅层变幅小,且有一定的滞后性;负温使坝坡浅层孔隙水相变成冰,宏观上表现为未冻水体积分数的降低,坝坡浅层土石混合体孔隙水相变、坝体填土内水分向坝坡迁移和冻结峰面向坝体内部移动是护坡冻胀破坏的主要因素;大坝坝坡计算冻胀量为20~30 cm,最大值为36 cm,计算结果与实测冻胀变形资料吻合;护坡冻胀破坏主要由砂砾料垫层、坝体填土等土石混合体冻胀及冰推力共同作用引起。研究结果可为寒区土石坝护坡设计提供参考。 展开更多
关键词 土石坝 护坡 冻胀破坏 --力耦合 寒区
下载PDF
黄连-花椒提取液对高脂血症小鼠的作用和机制研究 被引量:1
20
作者 苗青 刘燕君 +2 位作者 王瑞海 刘丽梅 胡镜清 《中国中医基础医学杂志》 CAS CSCD 2024年第10期1715-1720,共6页
目的基于寒热并用法研究黄连-花椒提取液对高脂血症的作用与可能的机制。方法采用高脂喂养ApoE-/-小鼠建立高脂血症模型,给予黄连-花椒提取液进行干预。全自动生化仪检测各组小鼠血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyce... 目的基于寒热并用法研究黄连-花椒提取液对高脂血症的作用与可能的机制。方法采用高脂喂养ApoE-/-小鼠建立高脂血症模型,给予黄连-花椒提取液进行干预。全自动生化仪检测各组小鼠血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)、丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase,AST)、肿瘤坏死因子(tumor necrosis factor,TNF)-α、白介素(interleukin,IL)-1β和IL-6水平;HE染色和油红O染色观察肝组织病理变化;ELISA、RT-qPCR法检测肝脏3-羟基-3-甲基戊二酸单酰辅酶A(3-hydroxy-3-methyl glutaryl coenzyme A reductase,HMG-CoA)还原酶水平和mRNA表达;Western blot检测细胞外信号调节激酶/p38丝裂原活化蛋白激酶(extracellular signal-regulated kinase/p38 mitogen activated protein kinase,ERK/p38 MAPK)信号通路相关蛋白含量。结果黄连-花椒干预后,小鼠血清中TC、TG、LDL-C、ALT、AST、TNF-α、IL-1β和IL-6水平均显著降低(P<0.05);肝细胞脂肪空泡和脂质沉积减少,肝脂肪病变减轻;肝脏HMG-CoA还原酶水平和mRNA表达显著下降(P<0.01),p-ERK1/2/ERK1/2和p-p38/p38均显著降低(P<0.01)。结论黄连-花椒提取液可降低高脂血症小鼠血脂水平,减轻肝脂肪病变,通过抑制肝脏HMG-CoA还原酶减少胆固醇合成,降低炎症因子水平,其机制可能与调控ERK/p38 MAPK信号通路有关。 展开更多
关键词 寒热并用法 黄连-花椒提取液 高脂血症 HMG-COA还原酶 ERK/p38 MAPK信号通路
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部