Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-...To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-day with(748±26) g, 144 males and 144 females) were divided randomly into six temperature-controlled chambers. Each chamber contained six cages including eight AA broilers per cage, each cage as a repeat. After acclimation for one week(temperature, 21℃; relative humidity, 60%), the temperature of each chamber was adjusted(finished within 1 h) respectively to 10, 14, 18, 22, 26, or 30℃(RH, 60%) for a 14-day experimental period. After treatment, gross energy intake(GEI), metabolizable energy intake(MEI), the ratio of MEI/BW, metabolizability, average daily gain(ADG), the concentration of liver mitochondria protein and cytochrome c oxidase(CCO) were measured respectively. Our results confirmed that when the temperature over 26℃ for 14 days, GEI, MEI and CCO activities were decreased significantly(P〈0.05), but the concentration of liver mitochondria protein was increased and metabolizability of broilers was not influenced(P〉0.05). Compared with treatment for 14 days, the ratio of MEI/body weight(BW) were also decreased when the temperature over 26℃ after temperature stress for 7 days(P〈0.05), meanwhile mitochondrial protein concentration was increased at 10℃ and CCO activity was not affected(P〉0.05). Additionally at 22℃, the ADG reached the maximal value. When kept in uncomfortable temperatures for a long time, the ADG and CCO activities of broiler were reduced, which was accompanied by mitochondrial hyperplasia. In summary, our study focused on the performance of broilers during sustained cold and heat environmental temperatures ranging from 10 to 30℃. From the point of view of energy utilization, moreover, 22 to 26℃ is comfortable for 28–42 day s broilers. And these could provide the theoretical basis on the high efficient production.展开更多
Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Ma...Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume.of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water frigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology.展开更多
A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use o...A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use of a GHP system in cold-climate regions is more attractive owing to its higher COP for heating compared to conventional heating devices, such as furnaces or boilers. Many factors, however, determine the operational performance of an existing GHP system, such as control strategy, part/full-load efficiency, the age of the system, defective parts, and whether or not regular maintenance services are provided. The omitting of any of these factors in design and operation stages could have significant impacts on the normal operation of GHP systems. Therefore, the objectives of this paper are to further investigate and study the existing GHP systems currently used in buildings located in cold-climate regions of the US, in terms of system operational performance, potential energy and energy cost savings, system cost information, the reasons for installing geothermal systems, current operating difficulties, and owner satisfaction to date. After the comprehensive investigation and in-depth analysis of 24 buildings, the results indicate that for these buildings, about 75% of the building owners are very satisfied with their GHP systems in terms of noise, cost, and indoor comfort. About 71% of the investigated GHP systems have not had serious operating difficulties, and about 85% of the respondents (building owners) would suggest this type of system to other people. Compared to the national median of energy use and energy cost of typical buildings of the same type nationwide, the overall performance of the actual GHP systems used in the cold-climate regions is slightly better, i.e. about 7.2% energy savings and 6.1% energy cost savings on average.展开更多
Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditio...Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.展开更多
The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The ...The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The present study proposes a hybrid heating approach combining active heating with passive insulation.Conceptual experiments were conducted to investigate the effects of phase change materials(PCMs),inlet water temperature,and intermittent pump startup strategies on battery performance.The obtained experimental results demonstrate that low temperatures lead to increased electrochemical impedance and reduced charge–discharge capacity in batteries.Notably,charge transfer resistance of 162 mΩwas observed at-30℃.Herein,the developed PCM-based battery heating system effectively extended the operational capacity of batteries in cold driving conditions and maintained battery warmth by leveraging the superior heat storage capability of the PCM.Additionally,after the switch off of the heating system,the charge capacity of the battery exceeded 80%owing to latent heat.The use of an intermittent heating strategy not only allowed to conserve energy but also maintained adequate heat storage within the battery module.At-30℃,this strategy enhanced the power efficiency of the cooling system by 35.94%with a reduction in capacity of only 0.8%compared to the continuous strategy.展开更多
Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual...Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position d...Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
Recent studies have revealed that the property of drug is mainly associated with the body's substance and energy metabolism. The present study aimed to evaluate the drug property of Poria, called Fuling(FL) in tra...Recent studies have revealed that the property of drug is mainly associated with the body's substance and energy metabolism. The present study aimed to evaluate the drug property of Poria, called Fuling(FL) in traditional Chinese medicine(TCM), in terms of its effects on the substance and energy metabolism in rat models of cold-deficiency and heat-deficiency syndromes, compared with Aconiti Lateralis Radix Praeparaia, called Fuzi(FZ) in TCM, with hot property, and Anemarrhenae Rhizoma, called Zhimu(ZM) in TCM, with cold property, as reference drugs, respectively. The appearance score, toe and rectal temperatures of the animals treated were assessed at different time points. Several indices in vivo correlated with substance and energy metabolism(glucokinas, phosphoglycerate kinase, cytochrome c reductase, cytochrome c oxydase, and Na^+-K^+-ATPase), endocrine system(triiodothyronine, thyroxine, and 17-hydroxycorticosteroid), nervous system(acetylcholin esterase), and cyclic nucleotide system were determined. The changes in appearance score and indices in vivo suggested the successful establishment of cold-deficiency and heat-deficiency syndrome models. FZ reversed the decreased levels of indices(substance and energy metabolism and endocrine system) and alleviated the syndrome of cold-deficiency model, and ZM showed obviously therapeutic effect on heat-deficiency syndrome(appearance score, substance and energy metabolism, and endocrine system). FL could alleviate cold-deficiency syndrome and raise the decreased levels of glucokinas, phosphoglycerate kinase, cytochrome c reductase and triiodothyronine in cold-deficiency model, but had no significant effect on heat-deficiency syndrome. Drug property of FL was inferred as trending to "flat and warm", which still need further study. It was advisable to adopt both cold-deficiency and heat-deficiency models to study the drugs with "flat" property.展开更多
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD39B02)the Science and Technology Innovation Team Project of Chinese Academy of Agricultural Sciences (cxgc-ias-07-2013)financial support by the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184G1105)
文摘To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-day with(748±26) g, 144 males and 144 females) were divided randomly into six temperature-controlled chambers. Each chamber contained six cages including eight AA broilers per cage, each cage as a repeat. After acclimation for one week(temperature, 21℃; relative humidity, 60%), the temperature of each chamber was adjusted(finished within 1 h) respectively to 10, 14, 18, 22, 26, or 30℃(RH, 60%) for a 14-day experimental period. After treatment, gross energy intake(GEI), metabolizable energy intake(MEI), the ratio of MEI/BW, metabolizability, average daily gain(ADG), the concentration of liver mitochondria protein and cytochrome c oxidase(CCO) were measured respectively. Our results confirmed that when the temperature over 26℃ for 14 days, GEI, MEI and CCO activities were decreased significantly(P〈0.05), but the concentration of liver mitochondria protein was increased and metabolizability of broilers was not influenced(P〉0.05). Compared with treatment for 14 days, the ratio of MEI/body weight(BW) were also decreased when the temperature over 26℃ after temperature stress for 7 days(P〈0.05), meanwhile mitochondrial protein concentration was increased at 10℃ and CCO activity was not affected(P〉0.05). Additionally at 22℃, the ADG reached the maximal value. When kept in uncomfortable temperatures for a long time, the ADG and CCO activities of broiler were reduced, which was accompanied by mitochondrial hyperplasia. In summary, our study focused on the performance of broilers during sustained cold and heat environmental temperatures ranging from 10 to 30℃. From the point of view of energy utilization, moreover, 22 to 26℃ is comfortable for 28–42 day s broilers. And these could provide the theoretical basis on the high efficient production.
基金Project 50490270 supported by Key Project of National Natural Science Foundation of China
文摘Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume.of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water frigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology.
文摘A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use of a GHP system in cold-climate regions is more attractive owing to its higher COP for heating compared to conventional heating devices, such as furnaces or boilers. Many factors, however, determine the operational performance of an existing GHP system, such as control strategy, part/full-load efficiency, the age of the system, defective parts, and whether or not regular maintenance services are provided. The omitting of any of these factors in design and operation stages could have significant impacts on the normal operation of GHP systems. Therefore, the objectives of this paper are to further investigate and study the existing GHP systems currently used in buildings located in cold-climate regions of the US, in terms of system operational performance, potential energy and energy cost savings, system cost information, the reasons for installing geothermal systems, current operating difficulties, and owner satisfaction to date. After the comprehensive investigation and in-depth analysis of 24 buildings, the results indicate that for these buildings, about 75% of the building owners are very satisfied with their GHP systems in terms of noise, cost, and indoor comfort. About 71% of the investigated GHP systems have not had serious operating difficulties, and about 85% of the respondents (building owners) would suggest this type of system to other people. Compared to the national median of energy use and energy cost of typical buildings of the same type nationwide, the overall performance of the actual GHP systems used in the cold-climate regions is slightly better, i.e. about 7.2% energy savings and 6.1% energy cost savings on average.
基金the Science and Technology Program Project of the Ministry of Housing and Urban-Rural Development“Research on Indoor Thermal Environment Based on Zero Energy Building Technology in Hot Summer and Cold Winter Area”(2017-K1-014)Hubei Provincial Natural Fund Youth Fund“Technology and Evaluation of Multi-energy Complementary Energy Supply for Rural Residential Buildings in Hubei”(2017CFB311).
文摘Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.
基金supported by the National Natural Science Foundation of China(Grant No.52090062)。
文摘The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The present study proposes a hybrid heating approach combining active heating with passive insulation.Conceptual experiments were conducted to investigate the effects of phase change materials(PCMs),inlet water temperature,and intermittent pump startup strategies on battery performance.The obtained experimental results demonstrate that low temperatures lead to increased electrochemical impedance and reduced charge–discharge capacity in batteries.Notably,charge transfer resistance of 162 mΩwas observed at-30℃.Herein,the developed PCM-based battery heating system effectively extended the operational capacity of batteries in cold driving conditions and maintained battery warmth by leveraging the superior heat storage capability of the PCM.Additionally,after the switch off of the heating system,the charge capacity of the battery exceeded 80%owing to latent heat.The use of an intermittent heating strategy not only allowed to conserve energy but also maintained adequate heat storage within the battery module.At-30℃,this strategy enhanced the power efficiency of the cooling system by 35.94%with a reduction in capacity of only 0.8%compared to the continuous strategy.
基金Supported by Jilin Significant Tranformation Project of Science and Techrological Achievements[(2009)17]
文摘Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
基金The study was supported by the National Natural Science Foundation of China(No.52105396).The authors thank the State Key Laboratory of Materials Processing and Die&Mould Technology,and the Analytical&Testing Center,Huazhong University of Science&Technology for the extensive experiments.
文摘Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。
基金supported by National Basic Research Program of China(No.2013CB531803)
文摘Recent studies have revealed that the property of drug is mainly associated with the body's substance and energy metabolism. The present study aimed to evaluate the drug property of Poria, called Fuling(FL) in traditional Chinese medicine(TCM), in terms of its effects on the substance and energy metabolism in rat models of cold-deficiency and heat-deficiency syndromes, compared with Aconiti Lateralis Radix Praeparaia, called Fuzi(FZ) in TCM, with hot property, and Anemarrhenae Rhizoma, called Zhimu(ZM) in TCM, with cold property, as reference drugs, respectively. The appearance score, toe and rectal temperatures of the animals treated were assessed at different time points. Several indices in vivo correlated with substance and energy metabolism(glucokinas, phosphoglycerate kinase, cytochrome c reductase, cytochrome c oxydase, and Na^+-K^+-ATPase), endocrine system(triiodothyronine, thyroxine, and 17-hydroxycorticosteroid), nervous system(acetylcholin esterase), and cyclic nucleotide system were determined. The changes in appearance score and indices in vivo suggested the successful establishment of cold-deficiency and heat-deficiency syndrome models. FZ reversed the decreased levels of indices(substance and energy metabolism and endocrine system) and alleviated the syndrome of cold-deficiency model, and ZM showed obviously therapeutic effect on heat-deficiency syndrome(appearance score, substance and energy metabolism, and endocrine system). FL could alleviate cold-deficiency syndrome and raise the decreased levels of glucokinas, phosphoglycerate kinase, cytochrome c reductase and triiodothyronine in cold-deficiency model, but had no significant effect on heat-deficiency syndrome. Drug property of FL was inferred as trending to "flat and warm", which still need further study. It was advisable to adopt both cold-deficiency and heat-deficiency models to study the drugs with "flat" property.