Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the tempe...Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter.This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position.展开更多
This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens...This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens were heat treated to obtain hardness of 294, 445 and 595 HV200 (29, 45 and 55 HRC). Erosion tests were carried out at impingement angles from 20° to 90° and air drag pressures of 1.38, 2.07 and 2.76 bar (20, 30 and 40 psi). The main results are summarized as follows:(i) The harder material, the lower erosion;(ii) the maximum erosion rate is at 30°;(iii) Little difference in erosion rate at impact angle of 60° and 90° for a constant pressure tested regardless of the hardness level;(iv) As the pressure increases, so does the erosion rate, being more sensitive for low impact angles. Finally, a differential form of the general erosion equation is applied on a practical core-making case to evaluate the erosion rate of the H13 steel at 30° and 90° impingement angles.展开更多
In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc wel...In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.展开更多
Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and intern...Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and internationally by Chinese Academy of Sciences in April 1997. It is attached to the Lanzhou Institute of Glaciology and Geocryology, CAS.展开更多
The cold box plus process it discussed in principle When the proper heating to the corebox is given (65℃±2℃). the binder lever can be saved, also the core strength and surface hardnessare imtroved, the moisture...The cold box plus process it discussed in principle When the proper heating to the corebox is given (65℃±2℃). the binder lever can be saved, also the core strength and surface hardnessare imtroved, the moisture-sensitvity is reduced. The mechanism of the cold box plus process isthat the proper heat increases the activity of resin function groups and promotes the crosslinking re-action The result of a scanning electron microscope analysis shows that the core surface strength isimproved by heat展开更多
文摘Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter.This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position.
基金financially supported by NEMAK S.A. and Industria Meccanica Bassi Luigi&Co
文摘This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens were heat treated to obtain hardness of 294, 445 and 595 HV200 (29, 45 and 55 HRC). Erosion tests were carried out at impingement angles from 20° to 90° and air drag pressures of 1.38, 2.07 and 2.76 bar (20, 30 and 40 psi). The main results are summarized as follows:(i) The harder material, the lower erosion;(ii) the maximum erosion rate is at 30°;(iii) Little difference in erosion rate at impact angle of 60° and 90° for a constant pressure tested regardless of the hardness level;(iv) As the pressure increases, so does the erosion rate, being more sensitive for low impact angles. Finally, a differential form of the general erosion equation is applied on a practical core-making case to evaluate the erosion rate of the H13 steel at 30° and 90° impingement angles.
基金Armament Research Board (ARMREB),New Delhi for funding this projectwork (Project No MAA/03/41)
文摘In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.
文摘Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and internationally by Chinese Academy of Sciences in April 1997. It is attached to the Lanzhou Institute of Glaciology and Geocryology, CAS.
文摘The cold box plus process it discussed in principle When the proper heating to the corebox is given (65℃±2℃). the binder lever can be saved, also the core strength and surface hardnessare imtroved, the moisture-sensitvity is reduced. The mechanism of the cold box plus process isthat the proper heat increases the activity of resin function groups and promotes the crosslinking re-action The result of a scanning electron microscope analysis shows that the core surface strength isimproved by heat