Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control para...Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Ref...含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。展开更多
This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary d...This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.展开更多
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip...Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the National Basic Research Program of China (Grant No. 2006CB921603)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61008012,11074154,10934004,60978018,60978001,and 60808009)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)the New Teacher Foundation of the Ministry of Education of China (Grant No. 20101401120004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
文摘含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。
基金supported by ITER IO, the National Basic Research Program of China (973 Program, No. 2008CB717906)the National Special Support for R&D on Science and Technology for ITER (No. 2008GB102000)
文摘This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.
文摘Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.