The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfa...The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag Ni (they are hardly mutual soluble) and Ag Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag Ni, Ag Cu, especially, for Ag Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.展开更多
This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connecte...This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.展开更多
The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function...The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function of various operating parameters such as applied potential,reaction time and distance between the plasma jet and surface of the liquid.The efficiency of the degradation of RB-198 molecules was explored by means of UV-Vis spectroscopy.The reactive species involved during the treatment process were examined by optical emission spectra(OES).The present hydroxyl radicals(OH·radical)and hydrogen peroxide(H2O2)in the plasma-treated aqueous dye solutions were investigated using various spectroscopic techniques.The other parameters such as total organic carbon(TOC),conductivity and p H were also reviewed.The toxicity of plasma-treated RB-198 solution was finally studied by diffusion bacterial analysis and by tracking seed germination processes.The results show that a higher degradation percentage of99.27%was acquired for the RB-198 treated at higher reaction time and applied potential,and shorter distance between the plasma jet and water surface.This may be due to the formation of various reactive oxygen(OH·radical,atomic oxygen(O)and H2O2)and nitrogen species(nitric oxide(NO)radicals and N2 second positive system(N2 SPS))during the processes as confirmed by OES analysis and other spectroscopy analysis.TOC(17.7%-81.8%)and pH(7.5-3.4)values of the plasma-treated RB-198 decreased significantly with respect to various operation parameters,which indicates the decomposition of RB-198 molecules in the aqueous solution.Moreover,the conductivity of plasma-treated RB-198 aqueous solutions was found to have increased linearly during the plasma treatment due to the formation of various ionic species in aqueous solution.The toxicity analysis clearly exhibits the non-toxic behavior of plasma-treated RB-198 aqueous solution towards the bacterial growth and germination of seeds.展开更多
The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcript...The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcriptome changes of plants induced by APCP treatment are unknown.Herein,the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP.Results showed that APCP exhibited a dual effect(stimulation or inhibition)on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment.The metabolic analysis of amino acid,glutathione(GSH)and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling,while the accumulations of GSH,gibberellins and cytokinin were significantly increased.The RNA-Seq analysis showed that a total of218 differentially expressed genes(DEGs)were identified in 1 min APCP-treated seedlings versus the control,including 20 up-regulated and 198 down-regulated genes.The DEGs were enriched in pathways related to GSH metabolism,mitogen-activated protein kinase(MAPK)signaling transduction and plant resistance against pathogens.Moreover,most of the DEGs were defense,stimuli or stressresponsive genes and encoded proteins with oxidoreductase activity.Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNASeq data.These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH,phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway,accordingly enhance Arabidopsis seedling growth.This study provides a theoretical basis for the application of APCP in agriculture.展开更多
Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tu...Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.展开更多
Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weat...Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.展开更多
In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conj...In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2^-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.展开更多
The effect of cold high pressure densification(CHPD)on anisotropy of the critical current density(Jc)in《in situ》single core binary and alloyed MgB2 tapes has been determined as a function of temperatures at 4.2 K,20...The effect of cold high pressure densification(CHPD)on anisotropy of the critical current density(Jc)in《in situ》single core binary and alloyed MgB2 tapes has been determined as a function of temperatures at 4.2 K,20 K and 25 K as well as at applied magnetic fields up to 19 T.The study includes binary and C4H6O5(malic acid)doped MgB2 tapes before and after CHPD.It is remarkable that the CHPD process not only improved the Jc values,in particular at the higher magnetic fields,but also decreased the anisotropy ratio,Г=JC^///JC^⊥In binary MgB2 tapes,the anisotropy factor F increases with higher aspect ratios,even after applying CHPD.In malic acid(C4H6O5)doped tapes,however,the application of CHPD leads only to small enhancements ofГ,even for higher aspect ratios.This is attributed to the higher carbon content in the MgB2 filaments,which in turn is a consequence of the reduced chemical reaction path in the densified filaments.At all applied field values,it was found that CHPD processed C4H6O5 doped tapes exhibit an almost isotropic behavior.This constitutes an advantage in view of industrial magnet applications using wires with square or slightly rectangular configuration.展开更多
Electromagnetic interference(EMI)shielding composites with good flexibility and weatherability properties have attracted increased attention.In this study,we combined the surface modification method of sub-atmospheric...Electromagnetic interference(EMI)shielding composites with good flexibility and weatherability properties have attracted increased attention.In this study,we combined the surface modification method of sub-atmospheric pressure glow discharge plasma with in situ atmospheric pressure surface dielectric barrier discharge plasma(APSDBD)reduction to prepare polyethylene terephthalate supported silver(Ag/PET).Due to the prominent surface modification of PET film,mild plasma reduction,and effective control of the silver morphology by polyvinylpyrrolidone(PVP),a 3.32μm thick silver film with ultralow sliver loading(0.022 wt%)exhibited an EMI shielding efficiency(SE)of 39.45 d B at 0.01 GHz and 31.56 d B at 1.0 GHz(>30 d B in the range of 0.01–1.0 GHz).The SEM results and EMI shielding analysis indicated that the high performance originated from the synergistic effect of the formation of silver nanoparticles(Ag NPs)with preferentially oriented cell-like surface morphologies and layer-by-layer-like superimposed microstructures inside,which demonstrated strong microwave reflection properties.Fourier transform infrared spectrometer and x-ray diffractometer showed that the surface structures of the heat-sensitive substrate materials were not destroyed by plasma.Additionally,APSDBD technology for preparing Ag/PET had no special requirements on the thickness,dielectric constant,and conductivity of the substrate,which provides an effective strategy for manufacturing metal or alloy films on surfaces of heat-sensitive materials at a relatively low cost.展开更多
Cold plasma at room temperature and pressure is an emerging and novel tool for the inactivation of cell derived from its ionic energy,which is capable of breaking bonds such as carbon-carbon,carbon-hydrogen,carbon-oxy...Cold plasma at room temperature and pressure is an emerging and novel tool for the inactivation of cell derived from its ionic energy,which is capable of breaking bonds such as carbon-carbon,carbon-hydrogen,carbon-oxygen,among others,these being the ones that support the biological structure of microorganisms.This work tries to create its own infrastructure that includes a high voltage source,an infrared trigger which reduces the effect of the ozone created,an ionic reactor in which the plasma acts at atmospheric temperature and pressure,and a magnetic field that allow aligning the plasma to the combined processes that are carried out.展开更多
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
文摘The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag Ni (they are hardly mutual soluble) and Ag Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag Ni, Ag Cu, especially, for Ag Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.
文摘This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.
基金DST-SERB,Government of India for providing the financial support(EMR/2016/006812Dated 02-Nov-2017)The Management,Sri Ramakrishna Engineering College,Coimbatore,India and Government of India—DST INSPIRE Project 04/2013/000209。
文摘The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function of various operating parameters such as applied potential,reaction time and distance between the plasma jet and surface of the liquid.The efficiency of the degradation of RB-198 molecules was explored by means of UV-Vis spectroscopy.The reactive species involved during the treatment process were examined by optical emission spectra(OES).The present hydroxyl radicals(OH·radical)and hydrogen peroxide(H2O2)in the plasma-treated aqueous dye solutions were investigated using various spectroscopic techniques.The other parameters such as total organic carbon(TOC),conductivity and p H were also reviewed.The toxicity of plasma-treated RB-198 solution was finally studied by diffusion bacterial analysis and by tracking seed germination processes.The results show that a higher degradation percentage of99.27%was acquired for the RB-198 treated at higher reaction time and applied potential,and shorter distance between the plasma jet and water surface.This may be due to the formation of various reactive oxygen(OH·radical,atomic oxygen(O)and H2O2)and nitrogen species(nitric oxide(NO)radicals and N2 second positive system(N2 SPS))during the processes as confirmed by OES analysis and other spectroscopy analysis.TOC(17.7%-81.8%)and pH(7.5-3.4)values of the plasma-treated RB-198 decreased significantly with respect to various operation parameters,which indicates the decomposition of RB-198 molecules in the aqueous solution.Moreover,the conductivity of plasma-treated RB-198 aqueous solutions was found to have increased linearly during the plasma treatment due to the formation of various ionic species in aqueous solution.The toxicity analysis clearly exhibits the non-toxic behavior of plasma-treated RB-198 aqueous solution towards the bacterial growth and germination of seeds.
基金supported by National Natural Science Foundation of China(Nos.11605159,11405147)Chinese Postdoctoral Science Foundation(No.2017M612412)+2 种基金the Foundation of Key Technology Research Project of Henan Province(No.182102311115)Key Discipline Construction Project of Zhengzhou University(No.32410257)Youth Innovation Project of Key Discipline of Zhengzhou University(No.XKZDQN202002)。
文摘The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcriptome changes of plants induced by APCP treatment are unknown.Herein,the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP.Results showed that APCP exhibited a dual effect(stimulation or inhibition)on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment.The metabolic analysis of amino acid,glutathione(GSH)and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling,while the accumulations of GSH,gibberellins and cytokinin were significantly increased.The RNA-Seq analysis showed that a total of218 differentially expressed genes(DEGs)were identified in 1 min APCP-treated seedlings versus the control,including 20 up-regulated and 198 down-regulated genes.The DEGs were enriched in pathways related to GSH metabolism,mitogen-activated protein kinase(MAPK)signaling transduction and plant resistance against pathogens.Moreover,most of the DEGs were defense,stimuli or stressresponsive genes and encoded proteins with oxidoreductase activity.Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNASeq data.These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH,phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway,accordingly enhance Arabidopsis seedling growth.This study provides a theoretical basis for the application of APCP in agriculture.
文摘Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.
文摘Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.
基金supported by the Fundamental Research Funds of Shandong University,China(No.2016JC016)
文摘In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2^-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.
基金This work was supported by the Australian Research Council(Grant No.LP160101784)A.K.thanks the Researchers Supporting Project(RSP-2019/127)King Saud University,Riyadh,Saudi Arabia for the support.This work was performed in part at the Queensland node of the Australian National Fabrication Facility,a company established under the National Collaborative Research Infrastructure Strategy to provide nano-and microfabrication facilities for Australia's researchers.M.M.acknowledges an internal funding project of the University of Osijek(ZUP-2018).
文摘The effect of cold high pressure densification(CHPD)on anisotropy of the critical current density(Jc)in《in situ》single core binary and alloyed MgB2 tapes has been determined as a function of temperatures at 4.2 K,20 K and 25 K as well as at applied magnetic fields up to 19 T.The study includes binary and C4H6O5(malic acid)doped MgB2 tapes before and after CHPD.It is remarkable that the CHPD process not only improved the Jc values,in particular at the higher magnetic fields,but also decreased the anisotropy ratio,Г=JC^///JC^⊥In binary MgB2 tapes,the anisotropy factor F increases with higher aspect ratios,even after applying CHPD.In malic acid(C4H6O5)doped tapes,however,the application of CHPD leads only to small enhancements ofГ,even for higher aspect ratios.This is attributed to the higher carbon content in the MgB2 filaments,which in turn is a consequence of the reduced chemical reaction path in the densified filaments.At all applied field values,it was found that CHPD processed C4H6O5 doped tapes exhibit an almost isotropic behavior.This constitutes an advantage in view of industrial magnet applications using wires with square or slightly rectangular configuration.
基金supported by National Natural Science Foundation of China(Nos.52077024,21773020,21673026,11505019)Natural Science Foundation of Liaoning Province(No.20180550085)Zhang Xiuling Innovation Studio of Dalian City。
文摘Electromagnetic interference(EMI)shielding composites with good flexibility and weatherability properties have attracted increased attention.In this study,we combined the surface modification method of sub-atmospheric pressure glow discharge plasma with in situ atmospheric pressure surface dielectric barrier discharge plasma(APSDBD)reduction to prepare polyethylene terephthalate supported silver(Ag/PET).Due to the prominent surface modification of PET film,mild plasma reduction,and effective control of the silver morphology by polyvinylpyrrolidone(PVP),a 3.32μm thick silver film with ultralow sliver loading(0.022 wt%)exhibited an EMI shielding efficiency(SE)of 39.45 d B at 0.01 GHz and 31.56 d B at 1.0 GHz(>30 d B in the range of 0.01–1.0 GHz).The SEM results and EMI shielding analysis indicated that the high performance originated from the synergistic effect of the formation of silver nanoparticles(Ag NPs)with preferentially oriented cell-like surface morphologies and layer-by-layer-like superimposed microstructures inside,which demonstrated strong microwave reflection properties.Fourier transform infrared spectrometer and x-ray diffractometer showed that the surface structures of the heat-sensitive substrate materials were not destroyed by plasma.Additionally,APSDBD technology for preparing Ag/PET had no special requirements on the thickness,dielectric constant,and conductivity of the substrate,which provides an effective strategy for manufacturing metal or alloy films on surfaces of heat-sensitive materials at a relatively low cost.
文摘Cold plasma at room temperature and pressure is an emerging and novel tool for the inactivation of cell derived from its ionic energy,which is capable of breaking bonds such as carbon-carbon,carbon-hydrogen,carbon-oxygen,among others,these being the ones that support the biological structure of microorganisms.This work tries to create its own infrastructure that includes a high voltage source,an infrared trigger which reduces the effect of the ozone created,an ionic reactor in which the plasma acts at atmospheric temperature and pressure,and a magnetic field that allow aligning the plasma to the combined processes that are carried out.