Transverse thickness difference is an important quality index of non-oriented silicon steel strips. In order to fulfill users' accuracy requirements on the transverse thickness of silicon steel and improve the produc...Transverse thickness difference is an important quality index of non-oriented silicon steel strips. In order to fulfill users' accuracy requirements on the transverse thickness of silicon steel and improve the production yield, the factors influencing transverse thickness difference were analyzed. Then the work roll shape, control strategy and incoming hot-rolled strips were optimized. Since the optimization measures were implemented in the actual production, the thickness difference of non-oriented silicon steel has been reduced greatly and fulfilled the requirements placed by users. These measures have achieved remarkable effects.展开更多
It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This...It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.展开更多
The hot rolled strip of Fe-3Si steel was experimentally produced by thin slab casting and rolling(TSCR) process in the laboratory.The texture evolution rule was investigated during hot rolling and cold rolling.The t...The hot rolled strip of Fe-3Si steel was experimentally produced by thin slab casting and rolling(TSCR) process in the laboratory.The texture evolution rule was investigated during hot rolling and cold rolling.The texture distribution of cold rolled strips with four kinds of cold rolling reduction schedules was observed through X-ray diffraction method,and the orientation density variation of 1/16 layer,1/8 layer,1/4 layer,and 1/2 layer in thickness was analyzed.The cold rolled texture of steel A with four kinds of cold rolling reduction schedules was mainly composed of α and γ fibers.Cold rolling reduction ratio of 70% was more beneficial for obtaining more γ fibers.The γ fiber texture orientation density of {111}01-1 and {111}1-1-2 was the largest on the 1/8 layer and 1/4 layer and the least on the 1/16 layer and 1/2 layer for steel B.The texture orientation density of {001}-{223}11-0 in the α fibers for steel C was increased,but the texture orientation density of {332}-{110}11-0 was low.展开更多
Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy w...Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy was developed. Specifically, RSCT included roll contour design, roiling technology optimization, and control strategy development, aiming at both hot strip mills (HSMs) and cold strip mills (CSMs). Firstly, through the high-performance variable crown (HVC) work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs, a hot strip with a stable crown and limited wedge, :local spot, and single wave was obtained, which was suitable for cold rolling. Secondly, an approximately rectangular section was obtained by edge varying contact (EVC) work roll contour design, edge-drop setting control, and. closed loop control in the upper-stream, stands of CSMs. Moreover, complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs. In addition, the RSCT approach was applied in several silicon-steel production plants, where an outsicanding performance and remarkable economic benefits were observed.展开更多
文摘Transverse thickness difference is an important quality index of non-oriented silicon steel strips. In order to fulfill users' accuracy requirements on the transverse thickness of silicon steel and improve the production yield, the factors influencing transverse thickness difference were analyzed. Then the work roll shape, control strategy and incoming hot-rolled strips were optimized. Since the optimization measures were implemented in the actual production, the thickness difference of non-oriented silicon steel has been reduced greatly and fulfilled the requirements placed by users. These measures have achieved remarkable effects.
文摘It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.
基金Item Sponsored by National Natural Science Foundation of China(50534020)
文摘The hot rolled strip of Fe-3Si steel was experimentally produced by thin slab casting and rolling(TSCR) process in the laboratory.The texture evolution rule was investigated during hot rolling and cold rolling.The texture distribution of cold rolled strips with four kinds of cold rolling reduction schedules was observed through X-ray diffraction method,and the orientation density variation of 1/16 layer,1/8 layer,1/4 layer,and 1/2 layer in thickness was analyzed.The cold rolled texture of steel A with four kinds of cold rolling reduction schedules was mainly composed of α and γ fibers.Cold rolling reduction ratio of 70% was more beneficial for obtaining more γ fibers.The γ fiber texture orientation density of {111}01-1 and {111}1-1-2 was the largest on the 1/8 layer and 1/4 layer and the least on the 1/16 layer and 1/2 layer for steel B.The texture orientation density of {001}-{223}11-0 in the α fibers for steel C was increased,but the texture orientation density of {332}-{110}11-0 was low.
基金Item Sponsored by National Natural Science Foundation of China(51304017)National Key Technology Research and Development Program of the 12th Five-year Plan of China(2012BAF04B02)Fundamental Research Funds for Central Universities of China(FRF-SD-12-013B)
文摘Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy was developed. Specifically, RSCT included roll contour design, roiling technology optimization, and control strategy development, aiming at both hot strip mills (HSMs) and cold strip mills (CSMs). Firstly, through the high-performance variable crown (HVC) work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs, a hot strip with a stable crown and limited wedge, :local spot, and single wave was obtained, which was suitable for cold rolling. Secondly, an approximately rectangular section was obtained by edge varying contact (EVC) work roll contour design, edge-drop setting control, and. closed loop control in the upper-stream, stands of CSMs. Moreover, complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs. In addition, the RSCT approach was applied in several silicon-steel production plants, where an outsicanding performance and remarkable economic benefits were observed.