Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main a...Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main aim was to investigate the evolution of rolling and annealing textures from the well known behavior observed under single cold rolling condition to the less understood double cold rolling by using orientation distribution function (ODF). In the twice cold rolled samples, the annealing texture comprises only single {111}(110-112) r-fibre texture when it subjected to moderate reduction in the first round of rolling. Accordingly both the once cold rolled sample and the twice cold rolled sample with heavy reduction in the first round of rolling have much complex texture components. They are related to the formation of initial {111} subgrain and the priority growth of stable {111} nucleus.展开更多
Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparin...Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one. The double cold rolling texture is characterized by a higher γ-texture and a lower α-texture, and the { 111}〈112〉 component is improved remarkably. Based on the TEM observation and mechanical properties test, it is found that the reduction ratio assignment significantly affects the texture variation, as-annealing microstructures, and properties of the double cold rolled samples. These results may provide a theoretical guide for the industrial production of double cold rolled IF steel.展开更多
The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross sh...The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross shear rolling of copper is similar in primary components to that of conventional cold rolling,but the scattering degree and direction of the texture are dif- ferent,due to the residual shear strain change in different position along the normal to rolling plane.It seems that no more effect of the shear strain upon the recrystallization texture.展开更多
The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112&g...The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.展开更多
Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however...Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation. Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones.展开更多
Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed th...Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550℃. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550℃ to 700℃. The recrystallization texture was characterized by a major basal fiber and a minor {0113}〈2110〉 component. The strength of the recrystallization texture increased with increasing rolling reduction.展开更多
With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element c...With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.展开更多
The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger s...The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.展开更多
The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) ...The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.展开更多
The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented an...The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented and Goss oriented Al single crystal. The simulation results show that after rolling the crystal predominantly rotates around the transverse direction(TD) for both orientations. The rotations around the rolling direction(RD) and the normal direction(ND) are negligible. The reduction plays a significant role in the texture evolution. The TD rotation angle increases with increasing reduction. The deformation bands exist in the rolled specimens with the cubic initial orientation. Compared with the cubic oriented specimens,the TD rotation angles in the Goss oriented specimens are very small.展开更多
By selecting flexible polycrystalline Ag as the metallic substrates, highly c axis (001) textured YBCO thin films were fabricated by using a modified magnetron sputtering equipment which can accomplish dynamic de...By selecting flexible polycrystalline Ag as the metallic substrates, highly c axis (001) textured YBCO thin films were fabricated by using a modified magnetron sputtering equipment which can accomplish dynamic deposition and in-situ anneal treatment. The textures of Ag substrates have important effects on forming YBCO films with high critical current densities. Research on the textures of cold rolling Ag at different deformation degrees and recrystallization textures of Ag at different temperatures shows that in plane alignment of YBCO films is difficult to be obtained directly on cold rolling Ag substrates, because of the texture change of Ag during deposition heating of substrates and the strong dependence of J c of YBCO films on grain boundary misorientation angle of substrates. The recrystallization textures with cube (001) and rotated cube (001) in Ag were obtained. Experiments offer a possible prospect for the further research of fabricating sharp biaxially texture in Ag and the following deposition of high J c YBCO films directly on it.展开更多
An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlli...An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.展开更多
X-ray diffraction (XRD) was employed to analyze the texture evolution of commercial pure (CP) Ti during cold rolling and re- crystallization annealing. The texture components were measured by electron backscattere...X-ray diffraction (XRD) was employed to analyze the texture evolution of commercial pure (CP) Ti during cold rolling and re- crystallization annealing. The texture components were measured by electron backscattered diffraction (EBSD) after recrystallization an- nealing. The CP Ti tends to form a texture with the basal pole tilted 30°-40° away from the normal direction toward the transverse direction. The texture of the initial hot-rolled plate can be classified into three kinds, i.e., the pyramid texture (1013)[5230] and (2021)[1015], the basal plane texture (0001)[2110], and the stronger_prism_texture (1120)[0001]. After cold rolling and annealing (700℃,60 min),_the main texture components are the cold-rolled texture (1125)[1123] and the recrystallized texture (1013)[5230]. The texture (2021)[1015] is in- herited from the texture of the initial hot-rolled plate with the decrease of orientation density gradually. The volume contents of the cold-rolled texture {2115}(0110) and the recrystallized texture {1013}(1210) are calculated by EBSD. After recrystallization annealing, the specimen is rich in the recrystallized texture and inherits some of texture components from the cold-rolled texture. When the annealing time is prolonged, the anisotropic value decreases.展开更多
LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling text...LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.展开更多
Mg alloys conventionally rolled often present strong basal textures that affect negatively further deformations,limiting their applications.The present research found that cross-rolling experiences in adequate conditi...Mg alloys conventionally rolled often present strong basal textures that affect negatively further deformations,limiting their applications.The present research found that cross-rolling experiences in adequate conditions can weaken those intense basal textures as a result of the interaction of deformation mechanisms and dynamic recrystallization.The effects of rolling temperature and strain rate on the microstructure and texture of an AZ31B magnesium alloy sheet generated heterogeneous microstructure where the initial basal texture was strengthened during cold cross-rolling and it was gradually weakening by the rolling reduction and the rolling temperature increases in such a way that a rather weak basal fiber was produced applying reductions higher than 15%at temperatures higher than 200℃.Their ODF functions supported the texture weakening,exhibiting a combination of two crystallographic orientations represented by{0001}<211^(-)0>and{0001}<101^(-)0>.展开更多
3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled an...3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.展开更多
The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold r...The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold rolling with the reduction of 23%, due to the high intensity of dislocation and basal texture established during cold rolling. Compared with the Mg-3Gd-lZn hot-rolled sheet, the cold-rolled sheet annealed at 350 for 30 min may get an enhancement in strength without a great loss of ductility. The sheet processed by multi-pass cold rolling does not show a higher strength as expected, due to the softening effect of shear bands. However, the thin slab with the thickness less than 1 mm can be produced by the multi-pass cold rolling with the annealing treatment as few as possible.展开更多
The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electro...The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
文摘Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main aim was to investigate the evolution of rolling and annealing textures from the well known behavior observed under single cold rolling condition to the less understood double cold rolling by using orientation distribution function (ODF). In the twice cold rolled samples, the annealing texture comprises only single {111}(110-112) r-fibre texture when it subjected to moderate reduction in the first round of rolling. Accordingly both the once cold rolled sample and the twice cold rolled sample with heavy reduction in the first round of rolling have much complex texture components. They are related to the formation of initial {111} subgrain and the priority growth of stable {111} nucleus.
文摘Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one. The double cold rolling texture is characterized by a higher γ-texture and a lower α-texture, and the { 111}〈112〉 component is improved remarkably. Based on the TEM observation and mechanical properties test, it is found that the reduction ratio assignment significantly affects the texture variation, as-annealing microstructures, and properties of the double cold rolled samples. These results may provide a theoretical guide for the industrial production of double cold rolled IF steel.
文摘The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross shear rolling of copper is similar in primary components to that of conventional cold rolling,but the scattering degree and direction of the texture are dif- ferent,due to the residual shear strain change in different position along the normal to rolling plane.It seems that no more effect of the shear strain upon the recrystallization texture.
文摘The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.
文摘Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation. Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones.
基金financially supported by the National Basic Research and Development Program of China (No. 2010CB731606)
文摘Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550℃. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550℃ to 700℃. The recrystallization texture was characterized by a major basal fiber and a minor {0113}〈2110〉 component. The strength of the recrystallization texture increased with increasing rolling reduction.
文摘With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.
文摘The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.
文摘The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.
文摘The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented and Goss oriented Al single crystal. The simulation results show that after rolling the crystal predominantly rotates around the transverse direction(TD) for both orientations. The rotations around the rolling direction(RD) and the normal direction(ND) are negligible. The reduction plays a significant role in the texture evolution. The TD rotation angle increases with increasing reduction. The deformation bands exist in the rolled specimens with the cubic initial orientation. Compared with the cubic oriented specimens,the TD rotation angles in the Goss oriented specimens are very small.
文摘By selecting flexible polycrystalline Ag as the metallic substrates, highly c axis (001) textured YBCO thin films were fabricated by using a modified magnetron sputtering equipment which can accomplish dynamic deposition and in-situ anneal treatment. The textures of Ag substrates have important effects on forming YBCO films with high critical current densities. Research on the textures of cold rolling Ag at different deformation degrees and recrystallization textures of Ag at different temperatures shows that in plane alignment of YBCO films is difficult to be obtained directly on cold rolling Ag substrates, because of the texture change of Ag during deposition heating of substrates and the strong dependence of J c of YBCO films on grain boundary misorientation angle of substrates. The recrystallization textures with cube (001) and rotated cube (001) in Ag were obtained. Experiments offer a possible prospect for the further research of fabricating sharp biaxially texture in Ag and the following deposition of high J c YBCO films directly on it.
基金Project (51175428) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.
文摘X-ray diffraction (XRD) was employed to analyze the texture evolution of commercial pure (CP) Ti during cold rolling and re- crystallization annealing. The texture components were measured by electron backscattered diffraction (EBSD) after recrystallization an- nealing. The CP Ti tends to form a texture with the basal pole tilted 30°-40° away from the normal direction toward the transverse direction. The texture of the initial hot-rolled plate can be classified into three kinds, i.e., the pyramid texture (1013)[5230] and (2021)[1015], the basal plane texture (0001)[2110], and the stronger_prism_texture (1120)[0001]. After cold rolling and annealing (700℃,60 min),_the main texture components are the cold-rolled texture (1125)[1123] and the recrystallized texture (1013)[5230]. The texture (2021)[1015] is in- herited from the texture of the initial hot-rolled plate with the decrease of orientation density gradually. The volume contents of the cold-rolled texture {2115}(0110) and the recrystallized texture {1013}(1210) are calculated by EBSD. After recrystallization annealing, the specimen is rich in the recrystallized texture and inherits some of texture components from the cold-rolled texture. When the annealing time is prolonged, the anisotropic value decreases.
基金supported by Research Program of Chongqing Municipal Education Commission(KJQN201901127)University Innovation Research Group of Chongqing(CXQT20023)+2 种基金Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0184)support by the Research Program of Chongqing Municipal Education Commission(KJQN202201151)National Natural Science Foundation of China(52201107).
文摘LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.
基金supported by CAPES-(Coordenação de Aperfeiçoamento de Pessoal de Nível Su-perior),process no.PNPD20130250-22001018034P4.
文摘Mg alloys conventionally rolled often present strong basal textures that affect negatively further deformations,limiting their applications.The present research found that cross-rolling experiences in adequate conditions can weaken those intense basal textures as a result of the interaction of deformation mechanisms and dynamic recrystallization.The effects of rolling temperature and strain rate on the microstructure and texture of an AZ31B magnesium alloy sheet generated heterogeneous microstructure where the initial basal texture was strengthened during cold cross-rolling and it was gradually weakening by the rolling reduction and the rolling temperature increases in such a way that a rather weak basal fiber was produced applying reductions higher than 15%at temperatures higher than 200℃.Their ODF functions supported the texture weakening,exhibiting a combination of two crystallographic orientations represented by{0001}<211^(-)0>and{0001}<101^(-)0>.
基金financial supports from the Natural Science Foundation of Shandong Province(ZR2021ME241)the Natural Science Foundation of Liaoning Province(No.2020-MS-004)+2 种基金the National Natural Science Foundation of China(NSFC,Nos.51601193 and 51701218)State Key Program of National Natural Science of China(No.51531002)National Key Research and Development Program of China(No.2016YFB0301104).
文摘3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.
基金Project (2013CB632202) supported by the National Basic Research Program of ChinaProject (51105350) supported by the National Natural Science Foundation of China
文摘The severe cold rolling was employed to enhance strength of Mg-3Gd-lZn (mass fraction, %) alloy sheet. The 0.2% yield stress of the Mg-3Gd-1Zn hot-rolled sheet can be increased by 150% through the single-pass cold rolling with the reduction of 23%, due to the high intensity of dislocation and basal texture established during cold rolling. Compared with the Mg-3Gd-lZn hot-rolled sheet, the cold-rolled sheet annealed at 350 for 30 min may get an enhancement in strength without a great loss of ductility. The sheet processed by multi-pass cold rolling does not show a higher strength as expected, due to the softening effect of shear bands. However, the thin slab with the thickness less than 1 mm can be produced by the multi-pass cold rolling with the annealing treatment as few as possible.
基金Project(2011DFR50950)supported by the International Science and Technology Cooperation Program of ChinaProject(2012BAF09B04)supported by the National Key Technology Research and Development Program of ChinaProject(CSTC2013JCYJC60001)supported by Chongqing Science and Technology Commission,China
文摘The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.