Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o...Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.展开更多
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s...Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation.展开更多
Background: 1-3, 1-6 β-glucan derived from Baker’s yeast (Saccharomyces cerevisiae) has been widely studied for its immune stimulatory capabilities and safety. Previous studies found β-glucan to have efficacy at re...Background: 1-3, 1-6 β-glucan derived from Baker’s yeast (Saccharomyces cerevisiae) has been widely studied for its immune stimulatory capabilities and safety. Previous studies found β-glucan to have efficacy at reducing incidence of URTIs as well as being a low risk for negative side effects. The current study aimed to examine the effects of yeast β-glucan (Angel Yeast) on cold and flu incidences and symptoms in healthy adults. Methods: Two hundred and thirty-one males and females aged 18 to 65 years old supplemented with either β-glucan or a placebo for 3-months. Participants completed a general health questionnaire every 4 weeks and in addition, if participants experienced any cold or flu symptoms, these were recorded daily (along with severity) until resolved or up to 2 weeks. Results: Supplementation with β-glucan reduced the self-reported severity of sore throats and improved sleep quality compared to the placebo group. Conclusions: Yeast β-glucan supplementation appears to be able to help reduce certain symptoms experienced during a cold or flu episode and is safe and well tolerated.展开更多
In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706...In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706D2 positively regulated the biosynthesis of tricin-4’-O-(syringyl alcohol)ether-7-O-glucoside at both the transcriptional and metabolic levels.OsUGT706D2 mediated cold and submergence tolerance by modulating the expression of stress-responsive genes as well as the abscisic acid(ABA)signaling pathway.Gain of function of OsUGT706D2 increased cold and submergence tolerance and loss of function of OsUGT706D2 reduced cold tolerance.ABA positively regulated OsUGT706D2-mediated cold tolerance but reduced submergence tolerance.These findings suggest the potential use of OsUGT706D2 for improving abiotic stress tolerance in rice.展开更多
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w...The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.展开更多
基金supported by the National Key Research and Development Program of China (2017YFD0300408)the Major Research Projects of Anhui (202003b06020021)the Graduate Innovation Fund of Anhui Agricultural University (2020 ysj-5)。
文摘Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.
基金supported by grants from the National Natural Science Foundation of China(U20A2025,32101672,31971826)the National Key Research and Development Plan of China(2021YFF1001100)+2 种基金Natural Science Foundation of Heilongjiang province(YQ2023C035)Double First-class Innovation Achievement Program of Heilongjiang Province(LJGXCG2023-072)the Graduate Student Scientific Research Innovation Projects of Heilongjiang Bayi Agricultural University(YJSCX2022-Z01)。
文摘Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation.
文摘Background: 1-3, 1-6 β-glucan derived from Baker’s yeast (Saccharomyces cerevisiae) has been widely studied for its immune stimulatory capabilities and safety. Previous studies found β-glucan to have efficacy at reducing incidence of URTIs as well as being a low risk for negative side effects. The current study aimed to examine the effects of yeast β-glucan (Angel Yeast) on cold and flu incidences and symptoms in healthy adults. Methods: Two hundred and thirty-one males and females aged 18 to 65 years old supplemented with either β-glucan or a placebo for 3-months. Participants completed a general health questionnaire every 4 weeks and in addition, if participants experienced any cold or flu symptoms, these were recorded daily (along with severity) until resolved or up to 2 weeks. Results: Supplementation with β-glucan reduced the self-reported severity of sore throats and improved sleep quality compared to the placebo group. Conclusions: Yeast β-glucan supplementation appears to be able to help reduce certain symptoms experienced during a cold or flu episode and is safe and well tolerated.
基金jointly funded by National Natural Science Foundation of China(32372206)the Natural Science Foundation of Guangdong Province(2023A1515030224,2023A0505090005,2021TQ06N115)+3 种基金the Governor’s Special Program of 2023(Yuecainong[2023]No.145)the Key Field Research and Development Project of Guangdong Province(2022B0202110003)the Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2020PY-JX001)Guangdong Key Laboratory of New Technology in Rice Breeding(2023B1212060042)。
文摘In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706D2 positively regulated the biosynthesis of tricin-4’-O-(syringyl alcohol)ether-7-O-glucoside at both the transcriptional and metabolic levels.OsUGT706D2 mediated cold and submergence tolerance by modulating the expression of stress-responsive genes as well as the abscisic acid(ABA)signaling pathway.Gain of function of OsUGT706D2 increased cold and submergence tolerance and loss of function of OsUGT706D2 reduced cold tolerance.ABA positively regulated OsUGT706D2-mediated cold tolerance but reduced submergence tolerance.These findings suggest the potential use of OsUGT706D2 for improving abiotic stress tolerance in rice.
基金supported by the National Natural Science Foundation of China (Grant Nos. 92158204, 41506001 and 42076019)a Project supported by the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311021005)。
文摘The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.