The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed...The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.展开更多
By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The...By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.展开更多
Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified...Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified on its way northward,and eventually made landfall on Fujian province.In its evolution,there was a northwest-moving cold vortex in upper troposphere to the south of the Subtropical High over the western North Pacific(hereafter referred to as the Subtropical High).In this paper,the possible impacts of this cold vortex on Meranti in terms of its track and intensity variation is investigated using typhoon best track data from China Meteorological Administration,analyses data of 0.5×0.5 degree provided by the global forecasting system of National Centers for Environmental Prediction,GMS satellite imagery and Taiwan radar data.Results show as follows:(1)The upper-level cold vortex was revolving around the typhoon anticlockwise from its east to its north.In the early stage,due to the blocking of the cold vortex,the role of the Subtropical High to steer Meranti was weakened,which results in the looping of the west-moving typhoon.However,when Meranti was coupled with the cold vortex in meridional direction,the northerly wind changed to the southerly at the upper level of the typhoon;at the same time the Subtropical High protruded westward and its southbound steering flow gained strength,and eventually created an environment in which the southerly winds in both upper and lower troposphere suddenly steered Meranti to the north;(2)The change of airflow direction above the typhoon led to a weak vertical wind shear,which in return facilitated the development of Meranti.Meanwhile,to the east of typhoon Meranti,the overlapped southwesterly jets in upper and lower atmosphere accelerated its tangential wind and contributed to its cyclonic development;(3)The cold vortex not only supplied positive vorticity to the typhoon,but also transported cold advection to its outer bands.In conjunction with the warm and moist air masses at the lower levels,the cold vortex increased the vertical instability in the atmosphere,which was favorable for convection development within the typhoon circulation,and its warmer center was enhanced through latent heat release;(4)Vertical vorticity budget averaged over the typhoon area further shows that the intensification of a typhoon vorticity column mainly depends on horizontal advection of its high-level vorticity,low-level convergence,uneven wind field distribution and its convective activities.展开更多
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the...The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.展开更多
In this paper,the analysis of two short periods of strong convection weather occurring in the northern part of Liaoning on August 8,2007 and July 16,2008 is made,which verifies that the two processes are typical sever...In this paper,the analysis of two short periods of strong convection weather occurring in the northern part of Liaoning on August 8,2007 and July 16,2008 is made,which verifies that the two processes are typical severe convective weather processes of cold vortex.They agree on location of occurrence,weather background and the characteristics of radar data.展开更多
The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measu...The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identi...Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.展开更多
Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China a...Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.展开更多
Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during t...Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.展开更多
In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in north...In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.展开更多
The forecast of precipitation,height,temperature,divergence and water vapor divergence during a rainfall process in Northeast China during June 13-14 in 2012 were analyzed. The results showed that the rainfall process...The forecast of precipitation,height,temperature,divergence and water vapor divergence during a rainfall process in Northeast China during June 13-14 in 2012 were analyzed. The results showed that the rainfall process in Northeast China on June 13 and 14 in 2012 was mainly caused by the typical northeast cold vortex at 500 h Pa,southwest low-level jet at 850 and 700 h Pa,and surface cyclone. The rainfall forecast valid in 60 h was obviously better than those valid in 36 and 84 h,and the forecast error mainly resulted from the prediction error of vertical water vapor transportation.展开更多
A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maint...A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maintaining mechanisms during its mature stage. Results indicated the vortex's intensity, divergence, ascending motions, precipitable water(PW), and thermal structures were all characterized by significant unevenness, and their main pattern changed gradually during the mature stage. Mechanisms accounting for the maintenance of the NCCV were also characterized by remarkable unevenness. Within different quadrants, dominant factors for the vortex's evolution may have differed from each other significantly. The NCCV-averaged vorticity budget revealed that the vertical advection of vorticity, which is closely related to convective activities, was the most favorable factor for maintaining the NCCV, whereas the tilting effect, which is closely related to the vertical shear of the horizontal wind(horizontal vorticity), was the most detrimental factor.展开更多
As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on th...As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.展开更多
In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chines...In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chinese researchers noticed that the Northeast China cold vortex (NECV) is an active and frequently occurring weather system over Northeast Asia, which is generated under specific conditions of topography and land-sea thermal contrast on the local and regional scales. Thereby, the NECV study was broadened to include synoptic situations, mesoscale and dynamic features, the heavy rain process, etc. Since the 21st century, in the context of the global warming, more attention has been paid to studies of the mechanisms that cause the NECV variations during spring and early summer as well as the climatic impacts of the NECV system. Note that the NECV activity, frequent or not, not only affects local temperature and precipitation anomalies, but also regulates the amount of precipitation over northern China, the Huai River basin, and the middle and lower reaches of Yangtze River. The NECV influence can even reach the Guangdon~ Guangxi region. However, compared to the achievements for the blocking system study, theoretical studies with regard to the NECV system are still insufficient. Research activities regarding the mechanisms for the NECV formation, particularly theoretical studies using linear or weak nonlinear methods need to be strengthened in the future. Meanwhile, great efforts should be made to deepen our understanding of the relations of the NECV system to the oceanic thermal forcing, the low-frequency atmospheric variations over mid-high latitudes, and the global warming.展开更多
Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex i...Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex in northeastern China were analyzed. In addition, the strength index, which described the characteristics of the vortex consistently and fre- quently, and the geographical distribution were given by continuous anomalies of circulation. Based on this index, the activity routines of the cold vortex, characteristics of atmospheric circulation, and their effects on precipitation in northeastern China were analyzed. The results show that: the activities of the cold vortex exhibit remarkable features of annual and interde- cadal oscillation, and the vortex high frequency and its characteristics of atmospheric circula- tion are described more accurately by the strength index of the cold vortex, which shows a high correspondence with the vortex precipitation during early summer and midsummer in the northeast. In strong (weak) vortex years, the general circulation in the middle and high lati- tudes of Eurasia is to the advantage (disadvantage) of the formation, development and maintenance of the cold vortex, thus it is easy (difficult) to form the circulation which is bene- ficial to transmit vapor from south to north during the period of July to August. Blocking over the Ural Mountains prevails (does not prevail) in early summer, and blocking over the Sea of Okhotsk prevails (does not prevail) in midsummer. Areas where the subtropical high is too small (large) and moves toward the north too late (early) are better (worse) for the mainte- nance of the cold vortex in northeastern China.展开更多
Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to ear...Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high(WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid–high latitudes in summer 2013, the Northeast Cold Vortex(NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.展开更多
A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key f...A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.展开更多
Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happen...Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happened and struck Jiangsu and Hubei provinces,China,causing heavy casualties and property losses.To better understand the possible causes of extremely abnormal NCCV activities,the external forcing and dynamical analysis was conducted.The results show that the extreme NCCV activity is regulated by the preceding sea surface temperature(SST)anomalies in the tropical Pacific,the snow conditions over the Tibetan Plateau,and the wave-mean flow interaction over the Eurasian continent.During the preceding autumn and winter in 2020,a moderate La Niña event occurred over the tropical Pacific,which triggered the Pacific-North America teleconnection pattern(PNA)like wave train and further dispersed the Rossby wave energy downstream along the mid-latitude westerly jet,forming a zonal wave train over the Eurasian continent.Moreover,the second minimum snow depth was recorded over the southeastern Tibetan Plateau during the boreal winter of 2020/2021,which induced a concurrent local anomalous anticyclone and a cyclone over northeast Asia in the following spring.Finally,the anomalous circulation is capable of achieving energy from the mean state through barotropic energy conversion and strengthening the downstream wave train accordingly.This study highlights the joint impacts of external forcings and internal atmospheric processes on the NCCV activity.展开更多
基金National Natural Science Foundation of China(41975073,42274215)Wuxi University Research Start-up Fund for Introduced Talents (2023r037)+1 种基金Qinglan Project of Jiangsu Province for DING Liu-guan"333"Project of Jiangsu Province for DING Liu-guan
文摘The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.
文摘By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.
基金Natural Fundamental Research and Development Project"973"Program(2009CB421504)Natural Science Foundation of China(40975032+2 种基金4073094841075037)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified on its way northward,and eventually made landfall on Fujian province.In its evolution,there was a northwest-moving cold vortex in upper troposphere to the south of the Subtropical High over the western North Pacific(hereafter referred to as the Subtropical High).In this paper,the possible impacts of this cold vortex on Meranti in terms of its track and intensity variation is investigated using typhoon best track data from China Meteorological Administration,analyses data of 0.5×0.5 degree provided by the global forecasting system of National Centers for Environmental Prediction,GMS satellite imagery and Taiwan radar data.Results show as follows:(1)The upper-level cold vortex was revolving around the typhoon anticlockwise from its east to its north.In the early stage,due to the blocking of the cold vortex,the role of the Subtropical High to steer Meranti was weakened,which results in the looping of the west-moving typhoon.However,when Meranti was coupled with the cold vortex in meridional direction,the northerly wind changed to the southerly at the upper level of the typhoon;at the same time the Subtropical High protruded westward and its southbound steering flow gained strength,and eventually created an environment in which the southerly winds in both upper and lower troposphere suddenly steered Meranti to the north;(2)The change of airflow direction above the typhoon led to a weak vertical wind shear,which in return facilitated the development of Meranti.Meanwhile,to the east of typhoon Meranti,the overlapped southwesterly jets in upper and lower atmosphere accelerated its tangential wind and contributed to its cyclonic development;(3)The cold vortex not only supplied positive vorticity to the typhoon,but also transported cold advection to its outer bands.In conjunction with the warm and moist air masses at the lower levels,the cold vortex increased the vertical instability in the atmosphere,which was favorable for convection development within the typhoon circulation,and its warmer center was enhanced through latent heat release;(4)Vertical vorticity budget averaged over the typhoon area further shows that the intensification of a typhoon vorticity column mainly depends on horizontal advection of its high-level vorticity,low-level convergence,uneven wind field distribution and its convective activities.
基金This research was jointly supported by the National Natural Science Foundation of China(Grant No.42005037)the Liaoning Provincial Natural Science Foundation Project(PhD Start-up Research Fund 2019-BS-214),the Special Scientific Research Project for the Forecaster(Grant No.CMAYBY2018-018)+2 种基金a Key Technical Project of Liaoning Meteorological Bureau(Grant No.LNGJ201903)the National Key Research and Development Project(Grant No.2018YFC1505601)the Open Foundation Project of the Institute of Atmospheric Environment,China Meteorological Administration(Grant Nos.2020SYIAE08 and 2020SYIAEZD5).
文摘The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.
基金Supported by Meteorological Observatory of Liaoning Province
文摘In this paper,the analysis of two short periods of strong convection weather occurring in the northern part of Liaoning on August 8,2007 and July 16,2008 is made,which verifies that the two processes are typical severe convective weather processes of cold vortex.They agree on location of occurrence,weather background and the characteristics of radar data.
基金supported by the National Key R&D Program of China under Grant No.2018YFC1507302the National Natural Science Foundation of China under Grant No.42175006+1 种基金Jiangsu Youth Talent Promotion Project(2021-084)the Basic Research Fund of CAMS under Grant No.2020R002.
文摘The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41205040 and 41375078)the State Key Development Program for Basic Research,China(Grant No.2012CB955203)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
基金supported by the China National Science Foundation (Grant No. 41705029)Anhui Joint Foundation (Grant No.2208085UQ11)+2 种基金China Meteorological Administration special grants on innovation and development (Grant No. CXFZ2023J017)China Meteorological Administration special grants on decision-making meteorological service (Grant No. JCZX2022005)support from the innovation team at Anhui Meteorological Bureau
文摘Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.
基金supported by the National Natural Science Foundation of China (Grant No. 41205027)the National Key Basic Research Program of China (Grant No. 2012CB 417201)
文摘Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.
基金jointly supported by the National Natural Science Foundation of China(Grant No.40975033)the National Key Technologies R&D Program of China(Grant No.2009BAC51B02)
文摘In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.
基金Supported by National Natural Science Foundation of China(No.41375049)
文摘The forecast of precipitation,height,temperature,divergence and water vapor divergence during a rainfall process in Northeast China during June 13-14 in 2012 were analyzed. The results showed that the rainfall process in Northeast China on June 13 and 14 in 2012 was mainly caused by the typical northeast cold vortex at 500 h Pa,southwest low-level jet at 850 and 700 h Pa,and surface cyclone. The rainfall forecast valid in 60 h was obviously better than those valid in 36 and 84 h,and the forecast error mainly resulted from the prediction error of vertical water vapor transportation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41205027, 41375053, and 41375058)
文摘A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maintaining mechanisms during its mature stage. Results indicated the vortex's intensity, divergence, ascending motions, precipitable water(PW), and thermal structures were all characterized by significant unevenness, and their main pattern changed gradually during the mature stage. Mechanisms accounting for the maintenance of the NCCV were also characterized by remarkable unevenness. Within different quadrants, dominant factors for the vortex's evolution may have differed from each other significantly. The NCCV-averaged vorticity budget revealed that the vertical advection of vorticity, which is closely related to convective activities, was the most favorable factor for maintaining the NCCV, whereas the tilting effect, which is closely related to the vertical shear of the horizontal wind(horizontal vorticity), was the most detrimental factor.
基金Supported by the Research Project of China Meteorological Administration(CMA)Institute of Atmospheric Environment(2021SYI AEKFMS11)National Key Research and Development Program of China(2021YFA0718000)+3 种基金National Natural Science Foundation of China(42175052 and 42005037)Joint Research Project for Meteorological Capacity Improvement(22NLTSY008)CMA Special Project for Innovative Development(CXFZ2022J008)CMA Youth Innovation Team Fund(CMA2024QN06 and CMA2024QN05).
文摘As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.
基金Supported by the National Natural Science Foundation of China(41630424,41275096,41175083,41305059,and 41405094)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106016 and GYHY201006020)
文摘In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chinese researchers noticed that the Northeast China cold vortex (NECV) is an active and frequently occurring weather system over Northeast Asia, which is generated under specific conditions of topography and land-sea thermal contrast on the local and regional scales. Thereby, the NECV study was broadened to include synoptic situations, mesoscale and dynamic features, the heavy rain process, etc. Since the 21st century, in the context of the global warming, more attention has been paid to studies of the mechanisms that cause the NECV variations during spring and early summer as well as the climatic impacts of the NECV system. Note that the NECV activity, frequent or not, not only affects local temperature and precipitation anomalies, but also regulates the amount of precipitation over northern China, the Huai River basin, and the middle and lower reaches of Yangtze River. The NECV influence can even reach the Guangdon~ Guangxi region. However, compared to the achievements for the blocking system study, theoretical studies with regard to the NECV system are still insufficient. Research activities regarding the mechanisms for the NECV formation, particularly theoretical studies using linear or weak nonlinear methods need to be strengthened in the future. Meanwhile, great efforts should be made to deepen our understanding of the relations of the NECV system to the oceanic thermal forcing, the low-frequency atmospheric variations over mid-high latitudes, and the global warming.
基金National Natural Science Foundation of China, No.41375078, No.41405094, No.41175083, No.41275096 Science and technology development plan in Jilin Province of China, No.20150204023 SF
文摘Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex in northeastern China were analyzed. In addition, the strength index, which described the characteristics of the vortex consistently and fre- quently, and the geographical distribution were given by continuous anomalies of circulation. Based on this index, the activity routines of the cold vortex, characteristics of atmospheric circulation, and their effects on precipitation in northeastern China were analyzed. The results show that: the activities of the cold vortex exhibit remarkable features of annual and interde- cadal oscillation, and the vortex high frequency and its characteristics of atmospheric circula- tion are described more accurately by the strength index of the cold vortex, which shows a high correspondence with the vortex precipitation during early summer and midsummer in the northeast. In strong (weak) vortex years, the general circulation in the middle and high lati- tudes of Eurasia is to the advantage (disadvantage) of the formation, development and maintenance of the cold vortex, thus it is easy (difficult) to form the circulation which is bene- ficial to transmit vapor from south to north during the period of July to August. Blocking over the Ural Mountains prevails (does not prevail) in early summer, and blocking over the Sea of Okhotsk prevails (does not prevail) in midsummer. Areas where the subtropical high is too small (large) and moves toward the north too late (early) are better (worse) for the mainte- nance of the cold vortex in northeastern China.
基金Supported by the National Basic Research Program of China(2013CB430203)Technology Innovation Project of the Inner Mongolia Meteorological Bureau(nmqxkjcx201606)Climate and Climate Change Innovation Team Project of the Inner Mongolia Meteorological Bureau
文摘Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high(WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid–high latitudes in summer 2013, the Northeast Cold Vortex(NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.
基金the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41305038)
文摘A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.
基金National Natural Science Foundation of China(41905067,42175052)National Key Research and Development Program(2021YFA0718000)+1 种基金Innovative Development Special Project of China Meteorological Administration(CXFZ2021Z011,CXFZ2021Z010 and CXFZ2022J039)science funding from Beijing Meteorological Service(BMBKJ202003005).
文摘Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happened and struck Jiangsu and Hubei provinces,China,causing heavy casualties and property losses.To better understand the possible causes of extremely abnormal NCCV activities,the external forcing and dynamical analysis was conducted.The results show that the extreme NCCV activity is regulated by the preceding sea surface temperature(SST)anomalies in the tropical Pacific,the snow conditions over the Tibetan Plateau,and the wave-mean flow interaction over the Eurasian continent.During the preceding autumn and winter in 2020,a moderate La Niña event occurred over the tropical Pacific,which triggered the Pacific-North America teleconnection pattern(PNA)like wave train and further dispersed the Rossby wave energy downstream along the mid-latitude westerly jet,forming a zonal wave train over the Eurasian continent.Moreover,the second minimum snow depth was recorded over the southeastern Tibetan Plateau during the boreal winter of 2020/2021,which induced a concurrent local anomalous anticyclone and a cyclone over northeast Asia in the following spring.Finally,the anomalous circulation is capable of achieving energy from the mean state through barotropic energy conversion and strengthening the downstream wave train accordingly.This study highlights the joint impacts of external forcings and internal atmospheric processes on the NCCV activity.