Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shakin...Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme.展开更多
A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-0...A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-03 were optimized, and the maximum lipase production of (45.9±2.3) U/mL was obtained at 30 ℃ and pH 7.0 after 36 h using olive oil (1%) and sucrose (0.5%) as carbon sources and combination of peptone (2%), yeast extract (0.5%) and ammonium sulfate (0.1%) as nitrogen sources. The lipase was purified to homogeneity with 10.6-fold, 18.84% yield and a specific activity of 1 862.2 U/mg using ammonium sulfate precipitation followed by SephadexG-75 gel filtration chromatography. The purified lipase with molecular mass of 68 ku was estimated by SDS-PAGE. The optimum pH and temperature for the purified lipase were found to be 8.5 and 40 ℃, respectively. The lipase kept more than 80% of activity in pH 7.0-10.0 and temperatures up to 45 ℃. The metal ions of Mn2+, Ba2+ significantly enhanced the lipase activity, whereas Cu2+, Fe3+ and Mg2+ strongly reduced the lipase activity. The Km and Vmax values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mrnol/L and 60.6 mmol/(L.min), respectively. The results show that this novel lipase has potential industrial applications.展开更多
基金supported by the Major Program of the Hebei Province Commission of Science and Technology during the 11 th Five-Year-Plan period,China(06220106D)
文摘Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme.
文摘A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-03 were optimized, and the maximum lipase production of (45.9±2.3) U/mL was obtained at 30 ℃ and pH 7.0 after 36 h using olive oil (1%) and sucrose (0.5%) as carbon sources and combination of peptone (2%), yeast extract (0.5%) and ammonium sulfate (0.1%) as nitrogen sources. The lipase was purified to homogeneity with 10.6-fold, 18.84% yield and a specific activity of 1 862.2 U/mg using ammonium sulfate precipitation followed by SephadexG-75 gel filtration chromatography. The purified lipase with molecular mass of 68 ku was estimated by SDS-PAGE. The optimum pH and temperature for the purified lipase were found to be 8.5 and 40 ℃, respectively. The lipase kept more than 80% of activity in pH 7.0-10.0 and temperatures up to 45 ℃. The metal ions of Mn2+, Ba2+ significantly enhanced the lipase activity, whereas Cu2+, Fe3+ and Mg2+ strongly reduced the lipase activity. The Km and Vmax values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mrnol/L and 60.6 mmol/(L.min), respectively. The results show that this novel lipase has potential industrial applications.