期刊文献+
共找到6,211篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction
1
作者 Hongzhang Wang Jing Guo +3 位作者 Shanjun Yang Chaoheng Cheng Jing Chen Zhihao Chen 《Structural Durability & Health Monitoring》 EI 2024年第2期181-196,共16页
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col... Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel. 展开更多
关键词 Pitting corrosion cold-formed thin-walled steel ultimate load prediction formula short columns
下载PDF
Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression
2
作者 Oulfa Harrat Yazid Hadidane +4 位作者 S.M.Anas Nadhim Hamah Sor Ahmed Farouk Deifalla Paul O.Awoyera Nadia Gouider 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3435-3465,共31页
Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel... Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling. 展开更多
关键词 cold-formed steel built-up sections SLENDERNESS rivets WELDED axial compression analytical approaches CONFINEMENT BUCKLING
下载PDF
Experimental and numerical study regarding H-steel all-bolted connection steel frame with composite wall boards
3
作者 Fan Min Guo Hongchao +2 位作者 Li Shen Wang Zhenshan Wang Huaqiang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期427-443,共17页
H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,... H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames. 展开更多
关键词 composite wall boards all-bolted steel frame H-steel low-cyclic loading failure modes
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
4
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Some Advances in the Application of Weathering and Cold-Formed Steel in Transmission Tower 被引量:2
5
作者 Fengli Yang Junke Han +1 位作者 Jingbo Yang Zheng Li 《Journal of Electromagnetic Analysis and Applications》 2009年第1期24-30,共7页
Application of weathering and cold-formed steel in transmission lines can reduce steel consumption and environmental pollution. Some advances in the studies on the weathering and cold-formed steel in transmission towe... Application of weathering and cold-formed steel in transmission lines can reduce steel consumption and environmental pollution. Some advances in the studies on the weathering and cold-formed steel in transmission tower are introduced. Firstly, corrosion-resistant tests of weathering steel samples under different simulating technical atmospheres were carried out separately for 240 hours. It shows that the corrosion degree of joint samples is higher than that of single chip samples, and the corrosion-resistant performance of weathering steel is superior to common carbon steel. The corrosion-resistance of weathering steel meets with the requirement of transmission tower. Secondly, experiments and finite element analysis for cold-formed angles and a 220kV prototype tower were completed, and the stability coeffi-cient fitting curves as well as the modification formulas of slenderness ratio for cold-formed members were determined. According to the structural characteristics of transmission towers, four sections of cold-formed angles with different sections and slenderness ratios were selected in this study. The finite element model well predicted the buckling behav-iour of the cold-formed members. Ultimate loads calculating by the fitting curve were well agreed to the experimental values, especially for the members with small slenderness ratios. Weight of the cold-formed steel tower can be reduced by more than 5 percent after considering the strength enhancement. Cost of the weathering and cold-formed steel transmission tower is nearly equivalent to that of hot-rolled steel tower with hot galvanizing. 展开更多
关键词 WEATHERING steel cold-formed steel BOLTED Joint Corrosion-Resistant TEST Prototype TEST Buckling Analysis Transmission TOWER
下载PDF
Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures
6
作者 Ju CHEN Wei-liang JIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1251-1257,共7页
In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard pre... In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen. Based on the experimental results, an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases. 展开更多
关键词 cold-formed steel Comer Elevated temperatures High strength steel Yield strength
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
7
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
Research on seismic performance of shear walls with concrete filled steel tube columns and concealed steel trusses 被引量:3
8
作者 Cao Wanlin Zhang Jianwei +1 位作者 Dong Hongying Wang Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期535-546,共12页
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl... In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested. 展开更多
关键词 shear wall concrete filled steel tube (CFT) concealed steel truss seismic performance experimental research
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:4
9
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 Reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING steel STRIP Seismic behaviors 1-g SHAKING table test
下载PDF
An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls 被引量:2
10
作者 Sun Guohua Chuang-Sheng Walter Yang +1 位作者 Gu Qiang Reginald DesRoches 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期403-415,共13页
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovati... To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%. 展开更多
关键词 PR connection steel frame infill walls shear connector hysteretic behavior STRUT
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
11
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Effect of fiber angle on LYP steel shear walls behavior 被引量:2
12
作者 Farzad Hatami Ali Ghamari Farshad Hatami 《Journal of Central South University》 SCIE EI CAS 2014年第2期768-774,共7页
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr... Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation. 展开更多
关键词 carbon fiber reinforced polymers fiber angle low yield point steel shear wall post buckling COMPOSITE
下载PDF
Seismic performance evaluation of steel frame-steel plate shear walls system based on the capacity spectrum method 被引量:3
13
作者 Jian-hua SHAO Qiang GU Yong-kang SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期322-329,共8页
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the... This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested. 展开更多
关键词 steel frame-steel plate shear walls (SPSW) system Capacity spectrum method (CSM) Seismic demand spectrum Base shear force-roof displacement Seismic performance evaluation
下载PDF
Lateral load-carrying capacity analyses of composite shear walls with double steel plates and filled concrete with binding bars 被引量:1
14
作者 周德源 刘凌飞 朱立猛 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2083-2091,共9页
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish... A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results. 展开更多
关键词 composite shear wall double steel plate binding bar lateral load-carrying capacity nonlinear finite element analysis
下载PDF
Manufacture of Extra-Thin Wall Steel Pipe by LD Cluster Mill 
15
作者 Dong Jie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1996年第1期14-18,共5页
The manufacture of extra-thin wall steel pipe by LD cluster mill through suitable tool design and process design was described in detail.The defects in steel pipe produced during rolling were analysed and some measure... The manufacture of extra-thin wall steel pipe by LD cluster mill through suitable tool design and process design was described in detail.The defects in steel pipe produced during rolling were analysed and some measures were taken to improve them.Five kinds of extra-thin wall steel pipes have been produced successfully,which are as follows:φ18.5mm×0.25 mm,φ15.5mm×0.25 mm,φ11.4mm×0.2mm,φ14- 24mm×0.12 mm,φ21.74mm×0.12 mm. 展开更多
关键词 ROLLING extra-thin wall steel pipe LD cluster mill
下载PDF
Microstructures and Properties of 550 MPa Grade High Strength Thin-walled H-beam Steel 被引量:2
16
作者 CHEN Jiping KANG Yonglin +2 位作者 QIAN Jianqing LI Shengzhi QIAN Haifan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1217-1222,共6页
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-... The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties. 展开更多
关键词 H-beam steel high strength thin-walled vanadium-nitrogen microalloying microstructure and mechanical property strengthening mechanism
下载PDF
Mechanical Properties of Two Kinds of New Cold-Formed Flange-Closed Welding Section Members
17
作者 武胜 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第6期1021-1032,共12页
The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparative... The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparatively flexible web,and it is a type of high efficient cross section.This paper presents two kinds of new cold-formed flange-closed welding sections named HF1 and HF2 according to different section component and parameters of HFB.Nonlinear finite element method has been adopted to investigate the mechanical properties such as buckling mode,deformation process,rigidity,ductility and correlation curve of two kinds of new section members which being subjected to axial compression,flexure,combined compression and bending.Systematical comparisons of the consumed steel quantities of per unit load carrying capacity between new section members and the same section dimensions of cold-formed C-section members have been carried out.Some conclusions can be drawn from above work that the new sections have some superior properties including higher load carrying capacity and section modulus,sufficient section stiffness,and difficult occurrence for the sub element local buckling.The new sections are suitable for bearing flexure,compression,combined compression and bending.The new sections′ consumed steel quantities of per unit load carrying capacity are almost half as those of the same dimension C-section members′.The experimental investigation is carried out further on the new cold-formed flange-closed welding section members and can be used in the practical engineering. 展开更多
关键词 hollow flange beam cold-formed steel members finite element analysis mechanical properties
下载PDF
Improving behavior of semi-supported steel plate shear walls
18
作者 Ali GHAMARI Abbas AKBARPOUR Ali GHANBARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2891-2905,共15页
In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This short... In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended. 展开更多
关键词 steel plate shear wall(SPSW) DUCTILITY STIFFNESS ultimate strength R factor
下载PDF
Experimental Study on Properties of Masonry Infill Walls Connected to Steel Frames with Different Connection Details
19
作者 Mehdi Kahrizi Mehrzad TahamouliRoudsari 《Structural Durability & Health Monitoring》 EI 2020年第2期165-185,共21页
The properties of infills and the way they are connected to frames may have significant effects on the seismic behavior of the structure.This study pre-sents an experimental study on evaluation and testing of five sin... The properties of infills and the way they are connected to frames may have significant effects on the seismic behavior of the structure.This study pre-sents an experimental study on evaluation and testing of five single story,single bay samples with the scale 1:3.This study strives to evaluate the behavior of masonry infill walls encased in steel frames,with emphasis on diferent details of the connection of the wall to the frame.Four frames with masonry infills and one frame without infill are experimented on by apply ing lateral load to their upper beams.Different details of the connection between the infill and the frame including anchorless wall within the frame,connecting the frame and the infill using separating vertical angles,steel rebars embedded in the infill wall and also using Added Damping And Siffness(ADAS)elements between the infill and the frame were investigated.The results indicate that the manner in which the infill and the frame are connected not only can significantly affect the crack fomation pattern and the failure modes of the infill wall,it's also alters the stiffness,the strength,the ductility,the out-of-plane deformation,and the amount of energy dis-sipation of the frame.Furthermore,not only using the ADAS yielding damper in the connection between the infill and the frame increases ductility and prevents the load-displacement diagram from plummeting,it also can be used in regions with medium to high relative seismic risk given that it can be replaced after the occurrence of earthquakes. 展开更多
关键词 Masonry infll wall steel framne wall-fame connection experimental study
下载PDF
Study on Steel Bar Construction Technology of Frameshear Wall in High-Rise Buildings
20
作者 Wang Wei 《Journal of Architectural Research and Development》 2018年第3期28-33,共6页
The development of the construction sector is rapidly growing,which induce competition at global level.In order to achieve the current economic development,more high-rise buildings construction projects were commenced... The development of the construction sector is rapidly growing,which induce competition at global level.In order to achieve the current economic development,more high-rise buildings construction projects were commenced without considering importance of the land to human and other living organism.On the other hand,the quality and safety aspect of the engineering technology used must be analyzed carefully and to be the primary aim for engineers to reduce any risk of harm in future.Many of the high-rise buildings in China consist of a frame or skeleton of reinforced concrete wall which need to be strengthened with shear walls to improve the stability and safety of the structures.According to practical work experience and relevant theoretical knowledge,the researcher introduced the reinforcement construction technology of frame-shear wall for high-rise buildings in depth from aspects like the arrangement of steel bar,construction preparation,steel bar anchorage,precautions to follow for the related work in future. 展开更多
关键词 HIGH-RISE BUILDINGS frame-shear wall steel BAR construction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部