The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (CB...The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (CB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about lOOnm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from CBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.展开更多
Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electr...Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electron microscopy analyses,it was found that the spot defects were caused by the residual oxide layer on the surface of the cold-rolled Fe-36%Ni alloy strip after hydrogen annealing.By properly increasing the grinding amount of the blank before cold rolling to remove the oxide layer,the spot defects on the surface of the cold-rolled strip were effectively eliminated,and the surface quality of the product was ensured.展开更多
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom...The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh...In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.展开更多
Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ...Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Bra...Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.展开更多
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3...The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.展开更多
2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates afte...2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.展开更多
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot...The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate.展开更多
Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not...Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not only structures of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also bubbles of water present in the deformed omphacite. The bubbles attach to the dislocation loops which are often connected to one another via a common bubble. Using infrared spectroscopy (IR), two types of hydrous components are identified as hydroxyl and free-water in the omphacite. An analysis of deformation mechanism of microstructure in omphacite suggests that the mineral deformed plastically under UHP metamorphic conditions by dislocation creep through hydrolitic weakening.展开更多
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr...The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.展开更多
The cold rolling deformation textural evolution of an interstitial-free (IF) steel sheet is investigated by experiment and simulation. The microstructure of the IF steel is observed by transmission electron microsco...The cold rolling deformation textural evolution of an interstitial-free (IF) steel sheet is investigated by experiment and simulation. The microstructure of the IF steel is observed by transmission electron microscopy (TEM). The relationship between the deformation behavior of individual grain and the grain orientation are connected by Taylor factor M. The results show that the grains with higher Taylor factor are deformed slighter than those with lower ones. By considering the heterogeneous deformation, the texture simulation result can be greatly improved.展开更多
A 1040°C-hot-deformed Ti_2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deform...A 1040°C-hot-deformed Ti_2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti_2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α_2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti_2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.展开更多
Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5,...Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5, 1, 2, or 3 s up to maximum temperatures of 150, 200, 250, or 300℃. To compare the annealing process in the current-carrying system with that in the current-free system, four other samples were heated to 300℃ at holding times of 60, 90, 120, or 150 s in a salt bath. The microstructural evolution and hardness values of the samples were then investigated. The results generally indicated that induction of an electrical current could accelerate the recrystallization process by decreasing the thermodynamic barriers for nucleation. In other words, the current effect, in addition to the thermal effect, enhanced the diffusion rate and dislocation climb velocity. During the primary stages of recrystallization, the grown nuclei of electrically annealed samples showed greater numbers and a more homogeneous distribution than those of the samples annealed in the salt bath. In the fully recrystallized condition, the grain size of electrically annealed samples was smaller than that of conventionally annealed samples. The hardness values and metallographic images obtained indicate that, unlike the conventional annealing process, which promotes restoration phenomena with increasing heating time, the electrical annealing process does not necessarily promote these phenomena. This difference is hypothesized to stem from conflicts between thermal and athermal effects during recrystallization.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 50471086 and 50461001.
文摘The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (CB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about lOOnm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from CBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.
文摘Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electron microscopy analyses,it was found that the spot defects were caused by the residual oxide layer on the surface of the cold-rolled Fe-36%Ni alloy strip after hydrogen annealing.By properly increasing the grinding amount of the blank before cold rolling to remove the oxide layer,the spot defects on the surface of the cold-rolled strip were effectively eliminated,and the surface quality of the product was ensured.
基金Project supported by Scientific Research Funds(Grant No.7001/700199)Henan Provincial Department Scientific Research Project(Grant No.22A430034).
文摘The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
基金This work was supported by the National Nature Science Foundation of China(Nos.12375244,12135009)the Science and Technology Innovation Program of Hunan Province(No.2020RC4020)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210007)Natural Science Research Project of Yichang City(No.A23-2-028).
文摘In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.
基金financially supported by the National Natural Science Foundation of China (51674088)Natural Science Foundation of Heilongjiang Province of China (LH 2021E011)。
文摘Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(YSZN2013CLD6)supported by the Nonferrous Metals Science Foundation of HNG-CSU+1 种基金ChinaProject supported by the Program Between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)
文摘Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030422, 40972131,40772135 and 41202120)the National Basic Research Program of China(Grant Nos.2009CB219601 and 2006CB202201)the China Postdoctoral Science Foundation Funded Project(2012M510590)
文摘The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.
基金Project(2013AA032401)supported by the National High Technology Research and Development Program of China。
文摘2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.
基金co-funded by the National Natural Science Foundation of China and Baoshan Iron & Steel Co., Ltd. (No. 50834008)
文摘The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate.
基金funded by the Ministry of Science and Technology of China(No.G19990755-01)the National Natural Science Foundation of China,Postdoctoral Science Foundation of China,the Chinese Academy of Sciences Wong K.C.Post-doctoral Research Award Fund and the State Key Laboratory of Mineral Deposits,Nanjing University
文摘Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not only structures of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also bubbles of water present in the deformed omphacite. The bubbles attach to the dislocation loops which are often connected to one another via a common bubble. Using infrared spectroscopy (IR), two types of hydrous components are identified as hydroxyl and free-water in the omphacite. An analysis of deformation mechanism of microstructure in omphacite suggests that the mineral deformed plastically under UHP metamorphic conditions by dislocation creep through hydrolitic weakening.
文摘The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.
基金the National Natural Science Foundation of China (Grant No. 50671021) Program for New Century Excellent Talents in University (Grant No. NCET-06-0287).
文摘The cold rolling deformation textural evolution of an interstitial-free (IF) steel sheet is investigated by experiment and simulation. The microstructure of the IF steel is observed by transmission electron microscopy (TEM). The relationship between the deformation behavior of individual grain and the grain orientation are connected by Taylor factor M. The results show that the grains with higher Taylor factor are deformed slighter than those with lower ones. By considering the heterogeneous deformation, the texture simulation result can be greatly improved.
基金the National Natural Science Foundation of China(Nos.51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Program of China(No.2015GB119001)for their grants and financial supports
文摘A 1040°C-hot-deformed Ti_2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti_2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α_2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti_2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.
基金the research board of Sharif University of Technology for the financial support
文摘Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5, 1, 2, or 3 s up to maximum temperatures of 150, 200, 250, or 300℃. To compare the annealing process in the current-carrying system with that in the current-free system, four other samples were heated to 300℃ at holding times of 60, 90, 120, or 150 s in a salt bath. The microstructural evolution and hardness values of the samples were then investigated. The results generally indicated that induction of an electrical current could accelerate the recrystallization process by decreasing the thermodynamic barriers for nucleation. In other words, the current effect, in addition to the thermal effect, enhanced the diffusion rate and dislocation climb velocity. During the primary stages of recrystallization, the grown nuclei of electrically annealed samples showed greater numbers and a more homogeneous distribution than those of the samples annealed in the salt bath. In the fully recrystallized condition, the grain size of electrically annealed samples was smaller than that of conventionally annealed samples. The hardness values and metallographic images obtained indicate that, unlike the conventional annealing process, which promotes restoration phenomena with increasing heating time, the electrical annealing process does not necessarily promote these phenomena. This difference is hypothesized to stem from conflicts between thermal and athermal effects during recrystallization.