期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Mechanical property of strain-hardening cementitious composites modified with superabsorbent polymers 被引量:2
1
作者 Deng Hanwen 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期309-315,共7页
In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigate... In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigated. Theuniaxial tensile test, the four-point bending test, thecompressive test, the drying shrinkage test and theenvironmental scanning electron microscope (ESEM) wereemployed to investigate the tensile strain capacity, flexuraldeformation capacity, compressive strength, drying shrinkage,crack width and self-healing of SHCC. The experimentalresults show that SHCC modified with SAP particles exhibitsexcellent ductility and deformability, and the tensile strain isup to about 4.5% and the average crack width is controlledaround 40 μm. Meanwhile, the drying shrinkage of SHCCmodified with SAP particles can reduce by about 60%.Furthermore, the self-healing behavior is observed in thecracks of specimen after three cycles of high-low relativehumidity curing, and the self-healing products can completelyfill the cracks of SHCC specimens modified with SAPparticles. It is, therefore, feasible to produce SHCC materialmodified with SAP particles, while simultaneously retaininghigher material ductility. 展开更多
关键词 strain-hardening cementitious composites (SHCC) SUPERABSORBENT polymer (SAP) mechanical property SELF-HEALING
下载PDF
Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys 被引量:5
2
作者 Min Zhang Jin-xiong Hou +5 位作者 Hui-jun Yang Ya-qin Tan Xue-jiao Wang Xiao-hui Shi Rui-peng Guo Jun-wei Qiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1341-1346,共6页
The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys(HEAs)subjected to cold rolling was investigated.The homogenized Al0.6CoCrFeNi alloys consisted of face-centere... The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys(HEAs)subjected to cold rolling was investigated.The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases,presenting similar mechanical behavior as the as-cast state.The yield and tensile strengths of the alloys could be dramatically enhanced to^1205 MPa and^1318 MPa after 50%rolling reduction,respectively.A power-law relationship was discovered between the strain-hardening exponent and rolling reduction.The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted,mainly based on the Hollomon relationship,by the strain-hardening exponent,and showed good agreement with the experimental results. 展开更多
关键词 dual-phase high-entropy alloys cold rolling strain-hardening exponent tensile strength
下载PDF
Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy 被引量:7
3
作者 赵欣 张奎 +3 位作者 李兴刚 李永军 何庆彪 孙建锋 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期846-850,共5页
The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-... The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-1 with maximum strain of 0.693. The strainhardening rate can be obtained from true stress-true strain curves, plots of θ-σ, -(δθ/δσ-)-a and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((δ/δσ( δθ/δσ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (σm) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot detormation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystallized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drew) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress. 展开更多
关键词 hot-compression dynamic recrystallization (DRX) strain-hardening rate average recrystallized grain size rare earths
下载PDF
Adiabatic shear localization evolution for steel based on the Johnson-Cook model and gradient-dependent plasticity 被引量:3
4
作者 Xuebin Wang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期313-318,共6页
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural eff... Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results. 展开更多
关键词 adiabatic shear band STEEL strain-hardening gradient-dependent plasticity Johnson-Cook model
下载PDF
ANALYTICAL EVALUATION OF PERMANENT DEFLECTION OF A THIN CIRCULAR PLATE STRUCK NORMALLY AT ITS CENTER BY A PROJECTILE 被引量:2
5
作者 Chen Liebin Yang Jialing 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期117-122,共6页
The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and st... The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and strain-hardening material undergoes serious local deformation but is not perforated during the impact. The theoretical analysis is based on an energy approach, in which the Cowper-Symonds equation is used for the consideration of strain rate sensitive effects and the parameters involved are determined with the aid of experimental data. The maximum permanent deflections predicted by the theoretical model are compared with those of FEM simulation and published papers obtained both by theory and experiment, and good agreement is achieved for a wide range of thickness of the plates and initial impact velocities. 展开更多
关键词 thin circular plate finite deflection impact strain rate sensitive strain-hardening
下载PDF
Dynamic and buckling analysis of a thin elastic-plastic square plate inca uniform temperature field 被引量:1
6
作者 ShifuXiao BinChen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第2期181-186,共6页
The nonlinear models of the elastic and elastic-linear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamiltons Variational Principle in a uniform temperature fi... The nonlinear models of the elastic and elastic-linear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamiltons Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritzs method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate. 展开更多
关键词 Elastic-linear strain-hardening constitutive relation Stability BIFURCATION POST-BUCKLING
下载PDF
A Reverse Numerical Approach to Determine Elastic-plastic Properties of Multi-layer Material Systems with Flat Cylindrical Indenters 被引量:1
7
作者 Baoxing XU Zhufeng YUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期707-712,共6页
In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extrac... In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously. 展开更多
关键词 Multi-layer material systems Indentation testing Finite element method (FEM) Yield stress strain-hardening modulus
下载PDF
Finite element implementation of strain-hardening Drucker-Prager plasticity model with application to tunnel excavation 被引量:1
8
作者 K.Liu S.L.Chen 《Underground Space》 SCIE EI 2017年第3期168-174,共7页
This paper presents a finite element implementation of a strain-hardening Drucker-Prager model and its application to tunnel excavation.The computational model was constructed based on the return mapping scheme,in whi... This paper presents a finite element implementation of a strain-hardening Drucker-Prager model and its application to tunnel excavation.The computational model was constructed based on the return mapping scheme,in which an elastic trial step was first executed,followed by plastic correction involving the Newton-Raphson method to return the predicted state of stresses to the supposed yield surface.By combining the plastic shear hardening rule and stress correction equations,the loading index for the strain-hardening Drucker-Prager model was solved.It is therefore possible to update the stresses,elastic and plastic strains,and slope of the yield locus at the end of each incremental step.As an illustrative example,an integration algorithm was incorporated into ABAQUS through the user subroutine UMAT to solve the tunnel excavation problem in strain-hardening Drucker-Prager rock formations.The obtained numerical results were found to be in excellent agreement with the available analytical solutions,thus indicating the validity and accuracy of the proposed UMAT code,as well as the finite element model. 展开更多
关键词 strain-hardening Drucker-Prager model Finite element method UMAT code Tunnel excavation
原文传递
The mathematic model of tension straightening process of magnesium alloy and experimental validation 被引量:1
9
作者 Yan Jing Zhang Ding-fei +2 位作者 Wang Xiao-hong Peng Jian Yang Lin 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第1期76-81,共6页
The stress-strain curve of bending bar and the stress relax curve of AZ31 was obtained by a tension test using Gleeble-1500.The tension straightening process mainly consisted of the elastic loading-I and unloading sta... The stress-strain curve of bending bar and the stress relax curve of AZ31 was obtained by a tension test using Gleeble-1500.The tension straightening process mainly consisted of the elastic loading-I and unloading stage,the elastic loading-II and unloading stage,and the elastic-plastic loading stage,which were based on the stretch force change during straightening.The circular bar straightening under one-dimensional bending was investigated and assumed to be linear strain-hardening elastic-plastic material.According to the elastic-plastic mechanics theory,the mathematical displacement-force model of a tension straightening process established,on which was based,the predicted displacement of tension straightening for various original deflection was calculated.The tension straightening experiment for AZ31 magnesium was conducted under the guidance of the predicted displacement.The experiment results present good straightness when there is a stress relaxation phenomenon or the temperature of tension straightening is 25℃. 展开更多
关键词 Tension straightening Mathematic model Linear strain-hardening elasticeplastic material Stress relaxation AZ31 magnesium
下载PDF
Dynamic Plastic Analysis of Ship-Platform Collision
10
作者 Bao, YB Li, RP Gu, YN 《China Ocean Engineering》 SCIE EI 1998年第1期23-32,共10页
This paper studies intensively the problems of ship-platform collision. The ship and platform are treated as one structural system connected with spring elements and then motion equation of the collision system is est... This paper studies intensively the problems of ship-platform collision. The ship and platform are treated as one structural system connected with spring elements and then motion equation of the collision system is established. A nonlinear force-displacement relationship is derived for the simulation of local dent in a hit member and the yield surface of a dented tubular section is developed to consider the reduction of load carrying capacity of hit members. Large deformations, plasticity and strain-hardening of the beam-column element are taken into account by combining the elastic large displacement analysis theory with the plastic node method. The effect of the hydrodynamic forces acting on the platform, the rubber fender the property of the local dent and the buckling behavior of beam-column on collision are analyzed. The numerical simulation of the nonlinear dynamic response is carried out by Wilson theta method with updated Newton-Raphson iteration. And the numerical example of the dynamic response of a offshore platform in ship-platform collision is also present. 展开更多
关键词 offshore platform COLLISION strain-hardening dynamic plasticity
下载PDF
Evaluation of Strain Hardening Parameters
11
作者 DING Zong-hai Pavel Huml YANG Wei 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2004年第4期38-46,共9页
The plane-strain compression test for three kinds of materials was carried out in a temperature range between room temperature and 400℃.Theσ-εcurves and strain-hardening rate at different temperatures were simulate... The plane-strain compression test for three kinds of materials was carried out in a temperature range between room temperature and 400℃.Theσ-εcurves and strain-hardening rate at different temperatures were simulated and a reasonable fit to the experimental data was obtained.A modified model created by data inference and computer simulation was developed to describe the strain hardening at a large deformation,and the predicted strain hardening are in a good agreement with that observed in a large range of stress.The influences of different parameters on strain hardening behaviour under large deformation were analysed.The temperature increase within the test temperatures for stainless steel 18/8 Ti results in dropping of flow stress and strain-hardening rate.For favourableγ-fibre texture to obtain high r,the cold rolling was applied at large reduction.In the experimental procedure,the X-ray diffraction test was carried out to compare the strain hardening and microstructure under large deformation for a bcc steel(low carbon steel SS-1142).The results indicate that the high strain-hardening rate possibly occurs when the primary slip plane{110}is parallel to the rolling plane and the strainhardening rate decreases when lots of{110}plane rotate out from the orientation{110}∥RP. 展开更多
关键词 deformation model strain hardening strain-hardening rate dislocation density FRICTION
下载PDF
Preparation of Self-compacting Ultra-high Toughness Cementitious Composite
12
作者 张秀芳 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期754-761,共8页
A self-compacting ultra-high toughness cementitious composite (UHTCC) reinforced by discontinuous short polyvinyl alcohol (PVA) fibers, which exhibits self-compacting performance in the fresh state and strain-hard... A self-compacting ultra-high toughness cementitious composite (UHTCC) reinforced by discontinuous short polyvinyl alcohol (PVA) fibers, which exhibits self-compacting performance in the fresh state and strain-hardening and multiple cracking behavior in the hardened state, was developed through controlling flow properties of fresh mortar matrix at constant ingredients concentrations determined by micromechanical design and ensuring uniform fibers dispersion. The superplasticizer was utilized to adjust its flow properties in the fresh state. A series of flow tests, including deformability test, flow rate test, and self-placing test, were conducted to characterize and quantify the fluidity performance of fresh mortar matrix and self-compactability of fresh UHTCC. It is revealed that the utilization of superplasticizer is efficient in producing the fresh mortar matrix with desirable fluidity and the resulting self-compacting UHTCC. In addition, results of four point bending tests on the developed self-compacting UHTCC confirm the insensitivity of mechanical performance of self-compacting UHTCC to the presence of external vibrations as well as the flexural characteristics of deformation hardening and multiple cracking. 展开更多
关键词 SELF-COMPACTING ultra-high toughness cementitious composite (UHTCC) flow property strain-hardening multiple cracking
下载PDF
Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites
13
作者 Qinghua LI Xing YIN +2 位作者 Botao HUANG Yifeng ZHANG Shilang XU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第2期145-160,共16页
In this study,sprayable strain-hardening fiber-reinforced cementitious composites(FRCC)were applied to strengthen the concrete slabs in a concrete-face rockfill dam(CFRD)for the first time.Experimental,numerical,and a... In this study,sprayable strain-hardening fiber-reinforced cementitious composites(FRCC)were applied to strengthen the concrete slabs in a concrete-face rockfill dam(CFRD)for the first time.Experimental,numerical,and analytical investigations were carried out to understand the flexural properties of FRCC-layered concrete slabs.It was found that the FRCC layer improved the flexural performance of concrete slabs significantly.The cracking and ultimate loads of a concrete slab with an 80 mm FRCC layer were 132%and 69%higher than those of the unstrengthened concrete slab,respectively.At the maximum crack width of 0.2 mm,the deflection of the 80-mm FRCC strengthened concrete slab was 144%higher than that of the unstrengthened concrete slab.In addition,a FE model and a simplified analytical method were developed for the design and analysis of FRCC-layered concrete slabs.Finally,the test result of FRCC leaching solution indicated that the quality of the water surrounding FRCC satisfied the standard for drinking water.The findings of this study indicate that the sprayable strain-hardening FRCC has a good potential for strengthening hydraulic structures such as CFRDs. 展开更多
关键词 strain-hardening cementitious composites engineered cementitious composites sprayable SHOTCRETE strengthening concrete-face rockfill dam digital image correlation
原文传递
Analysis of Deformation in a High Entropy Alloy Using an Internal State Variable Model
14
作者 Aaron Stein Paul S. Follansbee 《Materials Sciences and Applications》 2017年第6期484-492,共9页
Deformation in the model high entropy alloy CoCrFeMnNi is assessed using an internal state variable constitutive model. A remarkable property of these alloys is the extraordinarily high strain hardening rates they exp... Deformation in the model high entropy alloy CoCrFeMnNi is assessed using an internal state variable constitutive model. A remarkable property of these alloys is the extraordinarily high strain hardening rates they experience in the plastic region of the stress strain curve. Published stress-strain measurements over a range of temperatures are analyzed. Dislocation obstacle interactions and the observed high rate of strain hardening are characterized in terms of state variables and their evolution. A model that combines a short-range obstacle and a long-range obstacle is shown to match experimental measurements over a wide range of temperatures and grain sizes. The long-range obstacle is thought to represent interactions of dislocations with regions of incomplete mixing or partial segregation. Dynamic strain aging also is observed at higher temperatures. Comparisons with measurements in austenitic stainless steel show some common trends. 展开更多
关键词 High ENTROPY Alloys CONSTITUTIVE Modeling strain-hardening DEFORMATION Dynamic Strain AGING
下载PDF
Application of the Mechanical Threshold Stress Model to Large Strain Processing
15
作者 Paul S. Follansbee 《Materials Sciences and Applications》 2022年第5期300-316,共17页
Large-strain deformations introduce several confounding factors that affect the application of the Mechanical Threshold Stress model. These include the decrease with the increasing stress of the normalized activation ... Large-strain deformations introduce several confounding factors that affect the application of the Mechanical Threshold Stress model. These include the decrease with the increasing stress of the normalized activation energy characterizing deformation kinetics, the tendency toward Stage IV hardening at high strains, and the influence of crystallographic texture. Minor additions to the Mechanical Threshold Stress model are introduced to account for variations of the activation energy and the addition of Stage IV hardening. Crystallographic texture cannot be modeled using an isotropic formulation, but some common trends when analyzing predominantly shear deformation followed by uniaxial deformation are described. Comparisons of model predictions with measurements in copper processed using Equal Channel Angular Pressing are described. 展开更多
关键词 Mechanical Threshold Stress Model Large-Strain Deformations ECAP Stress-Strain Curves Shear Deformations Activation Energy strain-hardening
下载PDF
Unexpected creep behavior in a rejuvenated metallic glass 被引量:1
16
作者 J.P.Wu Y.Lin +6 位作者 F.H.Duan Q.Chen H.T.Wang N.Li J.L.Wen J.Pan L.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期140-149,共10页
Rejuvenation,bringing metallic glasses(MGs)to the younger and higher energy states,provides an alternative avenue to explore the interplay between the property and microstructures of MGs.In this study,the creep behavi... Rejuvenation,bringing metallic glasses(MGs)to the younger and higher energy states,provides an alternative avenue to explore the interplay between the property and microstructures of MGs.In this study,the creep behavior of the Zr_(69.5)Cu_(12)Ni_(11)Al_(7.5)MGs was experimentally examined by controlling the energy state in terms of structural rejuvenation and thermal annealing.It is found that compared to the as-cast counterpart,the annealed MG at a lower energy state exhibits a higher hardness,a smaller displacement,and a lower creep rate due to the decreased free volume and the inhibited activation of the shear transformation zone.Conversely,the rejuvenated MG at a high energy state displays lower hardness and increased free volume content,yet it demonstrates superior creep resistance compared to its as-cast counterpart,which deviates from conventional understanding.This unexpected phenomenon occurs as the initial high-content free volume annihilates during creep,and strain hardening takes precedence over strain softening as the prevailing process during creep deformation,leading to a superior creep performance in extremely rejuvenated MGs. 展开更多
关键词 Metallic glass Energy state REJUVENATION CREEP strain-hardening
原文传递
Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels 被引量:2
17
作者 Yong-Gang Deng Hong-Shuang Di Jie-Cen Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第9期1141-1148,共8页
Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile ... Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite-martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard- Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain- hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features. 展开更多
关键词 Dual-phase steel Heat-treatment schedule strain-hardening behavior Fracture mechanism
原文传递
On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels 被引量:1
18
作者 Yong-gang Deng Hong-shuang Di R. D. K. Misra 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第9期932-942,共11页
Different initial microstructures were obtained through combination of intercritical annealing and cold-rolling. Subsequently, steels with different microstructures of ferrite-pearlite (FP), ferrite-martensite (FM... Different initial microstructures were obtained through combination of intercritical annealing and cold-rolling. Subsequently, steels with different microstructures of ferrite-pearlite (FP), ferrite-martensite (FM) and complete martensite (M) were intercritically annealed at 780 ℃ for 5 min and water quenched to obtain ferrite-martensite microstructure. The significance of initial microstructures on ultimate microstructure, mechanical properties, strain-hardening ability and fracture behavior in dual-phase steels has been elucidated. Initial microstructures of FP, FM and M yielded different martensite morphologies, notably chain-like network structure, fine and fibrous martensite structure, respectively. Furthermore, with increasing martensite content in the initial microstructure, the average grain size of ferrite was significantly refined from about 12.3 to 2.1 μm, which results in that the ultimate tensile strength (UTS) and yield strength were increased, total elongation remained unaffected, and uniform elongation (UE) and strain-hardening ability were increased. A comparison of mechanical properties for different initial microstructures suggested that when the initial microstructure was complete martensite, the steel had excellent mechanical properties, with UTS × UE of 122.5 J cm^-3, which was 24% greater than the conventional continuously annealed steels with ferrite-pearlite initial microstructure (98.8 J cm^-3). The variation in tensile properties, strain-hardening ability and fracture mechanism of steels with different initial microstructures were discussed in relation to the ultimate microstructures. 展开更多
关键词 Dual-phase steel MICROSTRUCTURE Mechanical property strain-hardening FRACTURE
原文传递
Structural Ultrafine Grained Steels Obtained by Advanced Controlled Rolling
19
作者 R González J O García +3 位作者 M A Barbés M J Quintana L F Verdeja J I Verdeja 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第1期62-70,共9页
Steels with ultrafine grains (lower than 5 μm), which usually known as ultrafine ferrite or ultrafine grained materials, are presently the object of intense research, because of the improvement in resistance and fr... Steels with ultrafine grains (lower than 5 μm), which usually known as ultrafine ferrite or ultrafine grained materials, are presently the object of intense research, because of the improvement in resistance and fracture toughness they may reach compared to conventional steels (with grain sizes above this value). It is shown that the forenamed steels designated in the Euronorm EN 10149-2, which are manufactured by advanced techniques of controlled rolling and mainly used in automotive industry, have an ultrafine grain size in the range of 2.5 to 3.5 μm, and with elastic yield stresses higher than 400 MPa. Based on the Morrison-Miller criterion, it is shown that values of the strain-hardening coefficient lower than 0.08 would make the industrial application of these steels unfeasible. 展开更多
关键词 ultrafine grained steel mechanical property MANUFACTURABILITY strain-hardening
原文传递
Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping
20
作者 Jingyu Pang Hongwei Zhang +6 位作者 Long Zhang Zhengwang Zhu Huameng Fu Hong Li Aimin Wang Zhengkun Li Haifeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第19期74-80,共7页
Body-centered cubic(BCC)multi-principal element alloys(MPEAs)have intrinsic high strength but poor ductility,which greatly limits their potential applications.Here we present the boron-doping strategy to enhance the s... Body-centered cubic(BCC)multi-principal element alloys(MPEAs)have intrinsic high strength but poor ductility,which greatly limits their potential applications.Here we present the boron-doping strategy to enhance the strength and ductility of TiZrNb MPEAs simultaneously.The yield strength and ductility of the TiZrNb MPEA with boron addition of 500 ppm are increased by 19.0%and 48.7%compared to the boron-free TiZrNb MPEA,respectively.Boron-doping induced high efficiency in grain refinement from~96.0μm to~16.2μm is the main factor for strengthening.Dislocation dominated deformation mechanism involving cross slip and dislocation pining in the TiZrNb containing 500 ppm boron serves to enhance the strain-hardening capacity,resultant the enhancement of ductility from 7.8%to 11.6%.While the planar slip of dislocations is the dominated deformation mechanism for the boron-free TiZrNb. 展开更多
关键词 BORON-DOPING TiZrNb Grain refinement strain-hardening capacity Deformation mechanism
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部