Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to ...Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.展开更多
热休克蛋白27(heat shock protein 27,HSP27)是哺乳动物普遍存在的小休克蛋白家族成员之一,在参与调解细胞的增殖、分化和细胞凋亡过程中起到了重要的作用。为探讨猪HSP27基因的表达水平及其与F18大肠杆菌抗性的关系,本研究运用荧光定量...热休克蛋白27(heat shock protein 27,HSP27)是哺乳动物普遍存在的小休克蛋白家族成员之一,在参与调解细胞的增殖、分化和细胞凋亡过程中起到了重要的作用。为探讨猪HSP27基因的表达水平及其与F18大肠杆菌抗性的关系,本研究运用荧光定量PCR方法检测HSP27基因在苏太猪F18大肠杆菌病抗性型和敏感型资源群体中各组织的表达水平,并分析在E.coli F18抗性组和敏感组中的表达差异。结果表明:HSP27基因在所有检测个体的11个组织中均有表达,其中肺中表达量最高,其次在肝、脾、肾、十二指肠和空肠中表达较高,而在肌肉、胸腺和淋巴结中表达较低;抗性组和敏感组差异表达显示,在肝脏和淋巴结2个组织中,HSP27基因在抗性组个体中的表达量极显著高于敏感性个体的表达量(P<0.01),在脾脏、胸腺和空肠3个组织中,HSP27基因在抗性组个体中的表达量显著高于敏感性个体的表达量(P<0.05)。HSP27基因在E.coli F18抗性组免疫组织和肠道组织中的高水平表达提示HSP27基因可能在机体抵抗F18大肠杆菌感染过程中发挥了重要的免疫调控作用。展开更多
基金supported by Pancosma SA,Geneva,Switzerland,Jastro & Shields Graduate Research Awardthe United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA),multistate projects W4002 and NC1202
文摘Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.