In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.I...Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.展开更多
Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with tim...Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with time delays and proposes a time-delayed and distributed neural dynamics scheme.Under assumptions that the network topology is fixed and connected and the existing maximal time delay is no more than a threshold value,it is proved that all manipulators in the distributed network are able to reach a desired motion.The proposed distributed scheme with time delays considered is converted into a time-variant optimization problem,and a neural dynamics solver is designed to solve it online.Then,the proposed neural dynamics solver is proved to be stable,convergent and robust.Additionally,the allowable threshold value of time delay that ensures the proposed scheme’s stability is calculated.Illustrative examples and comparisons are provided to intuitively prove the validity of the proposed neural dynamics scheme and solver.展开更多
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Cur...When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently, a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
Navigation modules are capable of driving a robotic platform without direct human participation. However, for some specific contexts, it is preferable to give the control to a human driver. The human driver participat...Navigation modules are capable of driving a robotic platform without direct human participation. However, for some specific contexts, it is preferable to give the control to a human driver. The human driver participation in the robotic control process when the navigation module is running raises the share control issue. This work presents a new approach for two agents collaborative planning using the optimal control theory and the three-layer architecture. In particular, the problem of a human and a navigation module collaborative planning for a trajectory following is analyzed. The collaborative plan executed by the platform is a weighted summation of each agent control signal. As a result, the proposed architecture could be set to work in autonomous mode, in human direct control mode or in any aggregation of these two operating modes. A collaborative obstacle avoidance maneuver is used to validate this approach. The proposed collaborative architecture could be used for smart wheelchairs, telerobotics and unmanned vehicle applications.展开更多
僵尸网络(Botnet)是一种从传统恶意代码形态进化而来的新型攻击方式,为攻击者提供了隐匿、灵活且高效的一对多命令与控制信道(Command and Control channel,C&C)机制,可以控制大量僵尸主机实现信息窃取、分布式拒绝服务攻击和垃圾...僵尸网络(Botnet)是一种从传统恶意代码形态进化而来的新型攻击方式,为攻击者提供了隐匿、灵活且高效的一对多命令与控制信道(Command and Control channel,C&C)机制,可以控制大量僵尸主机实现信息窃取、分布式拒绝服务攻击和垃圾邮件发送等攻击目的。该文提出一种与僵尸网络结构和C&C协议无关,不需要分析数据包的特征负载的僵尸网络检测方法。该方法首先使用预过滤规则对捕获的流量进行过滤,去掉与僵尸网络无关的流量;其次对过滤后的流量属性进行统计;接着使用基于X-means聚类的两步聚类算法对C&C信道的流量属性进行分析与聚类,从而达到对僵尸网络检测的目的。实验证明,该方法高效准确地把僵尸网络流量与其他正常网络流量区分,达到从实际网络中检测僵尸网络的要求,并且具有较低的误判率。展开更多
Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put for...Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.展开更多
The global economic downturn caused primarily by the US sub-prime mortgage crisis in 2007 engendered revenue loss of the multinational corporations. Existing studies have yet to depict the detrimental impacts on city...The global economic downturn caused primarily by the US sub-prime mortgage crisis in 2007 engendered revenue loss of the multinational corporations. Existing studies have yet to depict the detrimental impacts on city's command and control functions induced by the sub-prime mortgage crisis together with its residual wave of global economic recession on the global spatial economy. Recent and previous studies have produced an 'instant history' of the global spatial economy before the global economic downturn undermines the global economy in late 2008. How- ever, the waxes and wanes of major cities' command and control functions on the global economic arena before and after the outbreak of financial crisis and its associated geo-economic transitions are still poorly understood. This paper attempts to contribute a new set of customized data to update and fill in the gap in the literature with the investigation of the command and control functions of cities arotmd the world from 2005 to 2009. Particular attentions are paid to the time-space relationship of the geo-economic transition that can capture the recent historical images of the com- mand and control situation of different cities in the world.展开更多
This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive cont...This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.展开更多
In order to satisfy the high efficiency and high precision of collaborative robots,this work presents a novel trajectory planning method.First,in Cartesian space,a novel velocity look-ahead control algorithm and a cub...In order to satisfy the high efficiency and high precision of collaborative robots,this work presents a novel trajectory planning method.First,in Cartesian space,a novel velocity look-ahead control algorithm and a cubic polynomial are combined to construct the end-effector trajectory of robots.Then,the joint trajectories can be obtained through the inverse kinematics.In order to improve the smoothness and stability in joint space,the joint trajectories are further adjusted based on the velocity look-ahead control algorithm and quintic B-spline.Finally,the proposed trajectory planning method is tested on a 4-DOF serial collaborative robot.The experimental results indicate that the collaborative robot achieves the high efficiency and high precision,which validates the effectiveness of the proposed method.展开更多
Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During ...Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During the teleoperation welding process, 6-DOF controller’s signal can be converted into welding torch’s position, velocity or acceleration changing which is being controlled. For welding purposes, control strategies of four modes are designed, which are static position and posture mode, dynamic position and posture mode, velocity mode and acceleration mode. A test and analysis system for testing the tracking accuracy and reliability of control strategy based on virtual reality is developed. The tracking accuracies of the four control strategies are studied in the following tests with straight line trajectory, curve trajectory or space curve trajectory. The results show that the control strategy in dynamic position and posture mode has best stability and strong adaptability which is the most suitable for the teleoperation system.展开更多
The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in...The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.展开更多
A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were li...A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.展开更多
Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
Multi-tenant collaboration brings the challenge to access control in cloud computing environment.Based on the multi-tenant role-based access control(MT-RBAC)model,a Temporal MT-RBAC(TMT-RBAC)model for collaborative cl...Multi-tenant collaboration brings the challenge to access control in cloud computing environment.Based on the multi-tenant role-based access control(MT-RBAC)model,a Temporal MT-RBAC(TMT-RBAC)model for collaborative cloud services is proposed.It adds the time constraint between trusted tenants,including usable role time constraint based on both calendar and interval time.Analysis shows that the new model strengthens the presentation ability of MT-RBAC model,achieves the finer-grained access control,reduces the management costs and enhances the security of multi-tenant collaboration in cloud computing environment.展开更多
Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with param...Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with parameter variations.CGAC is derived from standard model reference adaptive control(MRAC)by adding a command governor that guarantees acceptable transient performance without compromising stability and a command filter that improves the robustness against noise and time delay.Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over MRAC for UUVs,it has also shown that the command filter leads to a marked reduction in initial tracking performance of CGAC.As a solution,this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall tracking performance.The new modified CGAC(M-CGAC)has been experimentally validated and the results indicate that it successfully mitigates the initial tracking performance reduction,significantly improves the overall tracking performance,uses less control force,and increases the robustness to noise and time delay.Thus,M-CGAC is a viable adaptive control algorithm for current and future UUV applications.展开更多
A coordinated controller used for multi-telerobots collaboration was presented based on the strategy of shared control. First, it can overcome the effect of time delay. And, it combines the intelligence of the master ...A coordinated controller used for multi-telerobots collaboration was presented based on the strategy of shared control. First, it can overcome the effect of time delay. And, it combines the intelligence of the master side and the slave side, which cannot only increase the efficiency and the safety of the system but also relieve the burden and requirements of the operator. The controller can also cope with the collision between two telerobots. A simulation experiment was carried out to verify the validity of the controller for two slave robots.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金supported in part by the National Natural Science Foundation of China(62293514,52275020,and 91948301)。
文摘Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.
基金supported in part by the National Natural Science Foundation of China (62176109)the Natural Science Foundation of Gansu Province(21JR7RA531)+7 种基金the Team Project of Natural Science Foundation of Qinghai Province China (2020-ZJ-903)the State Key Laboratory of Integrated Services Networks (ISN23-10)the Gansu Provincial Youth Doctoral Fund of Colleges and Universities (2021QB-003)the Fundamental Research Funds for the Central Universities (lzujbky-2021-65)the Supercomputing Center of Lanzhou Universitythe Natural Science Foundation of Chongqing(cstc2019jcyjjq X0013)the CAAIHuawei Mind Spore Open Fund (CAAIXS JLJJ-2021-035A)the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with time delays and proposes a time-delayed and distributed neural dynamics scheme.Under assumptions that the network topology is fixed and connected and the existing maximal time delay is no more than a threshold value,it is proved that all manipulators in the distributed network are able to reach a desired motion.The proposed distributed scheme with time delays considered is converted into a time-variant optimization problem,and a neural dynamics solver is designed to solve it online.Then,the proposed neural dynamics solver is proved to be stable,convergent and robust.Additionally,the allowable threshold value of time delay that ensures the proposed scheme’s stability is calculated.Illustrative examples and comparisons are provided to intuitively prove the validity of the proposed neural dynamics scheme and solver.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA043701-02)
文摘When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently, a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
文摘Navigation modules are capable of driving a robotic platform without direct human participation. However, for some specific contexts, it is preferable to give the control to a human driver. The human driver participation in the robotic control process when the navigation module is running raises the share control issue. This work presents a new approach for two agents collaborative planning using the optimal control theory and the three-layer architecture. In particular, the problem of a human and a navigation module collaborative planning for a trajectory following is analyzed. The collaborative plan executed by the platform is a weighted summation of each agent control signal. As a result, the proposed architecture could be set to work in autonomous mode, in human direct control mode or in any aggregation of these two operating modes. A collaborative obstacle avoidance maneuver is used to validate this approach. The proposed collaborative architecture could be used for smart wheelchairs, telerobotics and unmanned vehicle applications.
文摘僵尸网络(Botnet)是一种从传统恶意代码形态进化而来的新型攻击方式,为攻击者提供了隐匿、灵活且高效的一对多命令与控制信道(Command and Control channel,C&C)机制,可以控制大量僵尸主机实现信息窃取、分布式拒绝服务攻击和垃圾邮件发送等攻击目的。该文提出一种与僵尸网络结构和C&C协议无关,不需要分析数据包的特征负载的僵尸网络检测方法。该方法首先使用预过滤规则对捕获的流量进行过滤,去掉与僵尸网络无关的流量;其次对过滤后的流量属性进行统计;接着使用基于X-means聚类的两步聚类算法对C&C信道的流量属性进行分析与聚类,从而达到对僵尸网络检测的目的。实验证明,该方法高效准确地把僵尸网络流量与其他正常网络流量区分,达到从实际网络中检测僵尸网络的要求,并且具有较低的误判率。
文摘Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.
基金Foundation item:Under the auspices of Hui Oi Chow Trust Fund(No.200902172004)Mrs.Li Ka Shing Fund,Strategic Research Theme on Contemporary China,Small Project Funding provided by the University of Hong Kong(No.200807176152)
文摘The global economic downturn caused primarily by the US sub-prime mortgage crisis in 2007 engendered revenue loss of the multinational corporations. Existing studies have yet to depict the detrimental impacts on city's command and control functions induced by the sub-prime mortgage crisis together with its residual wave of global economic recession on the global spatial economy. Recent and previous studies have produced an 'instant history' of the global spatial economy before the global economic downturn undermines the global economy in late 2008. How- ever, the waxes and wanes of major cities' command and control functions on the global economic arena before and after the outbreak of financial crisis and its associated geo-economic transitions are still poorly understood. This paper attempts to contribute a new set of customized data to update and fill in the gap in the literature with the investigation of the command and control functions of cities arotmd the world from 2005 to 2009. Particular attentions are paid to the time-space relationship of the geo-economic transition that can capture the recent historical images of the com- mand and control situation of different cities in the world.
基金supported by the National Natural Science Foundation of China(U1808205)the Fundamental Research Funds for the Central Universities(N2023011)+1 种基金the Youth Foundation of Hebei Educational Committee(QN2020522)the Natural Science Foundation of Hebei Province(F2020501018)。
文摘This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.
文摘In order to satisfy the high efficiency and high precision of collaborative robots,this work presents a novel trajectory planning method.First,in Cartesian space,a novel velocity look-ahead control algorithm and a cubic polynomial are combined to construct the end-effector trajectory of robots.Then,the joint trajectories can be obtained through the inverse kinematics.In order to improve the smoothness and stability in joint space,the joint trajectories are further adjusted based on the velocity look-ahead control algorithm and quintic B-spline.Finally,the proposed trajectory planning method is tested on a 4-DOF serial collaborative robot.The experimental results indicate that the collaborative robot achieves the high efficiency and high precision,which validates the effectiveness of the proposed method.
文摘Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During the teleoperation welding process, 6-DOF controller’s signal can be converted into welding torch’s position, velocity or acceleration changing which is being controlled. For welding purposes, control strategies of four modes are designed, which are static position and posture mode, dynamic position and posture mode, velocity mode and acceleration mode. A test and analysis system for testing the tracking accuracy and reliability of control strategy based on virtual reality is developed. The tracking accuracies of the four control strategies are studied in the following tests with straight line trajectory, curve trajectory or space curve trajectory. The results show that the control strategy in dynamic position and posture mode has best stability and strong adaptability which is the most suitable for the teleoperation system.
文摘The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.
基金Science and Technology Commission of Shanghai Municipality,China (No. 08dz1150401)
文摘A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
基金This work was sponsored by Qing Lan Project of JiangSu Province,The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Nos.17KJB520033,17KJB520032)National Natural Science Foundation of China(No.61772280)。
文摘Multi-tenant collaboration brings the challenge to access control in cloud computing environment.Based on the multi-tenant role-based access control(MT-RBAC)model,a Temporal MT-RBAC(TMT-RBAC)model for collaborative cloud services is proposed.It adds the time constraint between trusted tenants,including usable role time constraint based on both calendar and interval time.Analysis shows that the new model strengthens the presentation ability of MT-RBAC model,achieves the finer-grained access control,reduces the management costs and enhances the security of multi-tenant collaboration in cloud computing environment.
文摘Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with parameter variations.CGAC is derived from standard model reference adaptive control(MRAC)by adding a command governor that guarantees acceptable transient performance without compromising stability and a command filter that improves the robustness against noise and time delay.Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over MRAC for UUVs,it has also shown that the command filter leads to a marked reduction in initial tracking performance of CGAC.As a solution,this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall tracking performance.The new modified CGAC(M-CGAC)has been experimentally validated and the results indicate that it successfully mitigates the initial tracking performance reduction,significantly improves the overall tracking performance,uses less control force,and increases the robustness to noise and time delay.Thus,M-CGAC is a viable adaptive control algorithm for current and future UUV applications.
文摘A coordinated controller used for multi-telerobots collaboration was presented based on the strategy of shared control. First, it can overcome the effect of time delay. And, it combines the intelligence of the master side and the slave side, which cannot only increase the efficiency and the safety of the system but also relieve the burden and requirements of the operator. The controller can also cope with the collision between two telerobots. A simulation experiment was carried out to verify the validity of the controller for two slave robots.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.