Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t...Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.展开更多
The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-...The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels' objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.展开更多
4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfac...4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that ...Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that aligns with the evolving needs of education and teaching in the new era.This paper aims to provide a comprehensive overview of the research status surrounding blended teaching,encompassing fundamental issues,teaching design,practical guidance,teaching effectiveness,and evaluation.By critically examining the current challenges associated with blended teaching,this study proposes optimization strategies including enhancing student participation and interaction,promoting deep learning,improving teachers’preparedness,teaching technologies,and curriculum design capabilities,strengthening top-level design,and perfecting evaluation and incentive mechanisms.These strategies provide new directions for the reform of blended teaching.展开更多
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“mi...The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“micro ideological and political education”in colleges and universities under the development of all-media integration,this study summarizes the main practices,achievements,and problems of“micro ideological and political education”in colleges and universities,and proposes to optimize and improve the work of“micro ideological and political education”from the perspectives of platform construction,work creation,team building,and guarantee mechanism.Optimization and enhancement are needed to effectively improve the relevance and effectiveness of“micro ideological and political education”work.展开更多
This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequentia...This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.展开更多
Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whol...Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.展开更多
China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of ne...China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of new energies is the limited flexibility of regulations on power system resources,resulting in insufficient consumption capacity.Thus,the flexible resource costs for peak shaving as well as the reasonable coordinated development and operation optimization of regional renewable energy need to be considered.In this study,a renewable energy development layout configuration analysis method was established by considering the composite cost of a power system,comprehensively analyzing the potential of various flexibility regulation resources for the power system and its composite peak shaving cost,and combining renewable energy output characteristics,load forecasting,grid development,and other factors.For the optimization of various flexible resource utilization methods,a peak shaving cost estimation method from the perspective of the entire power system was established by combining the on-grid electricity prices and operating costs of different power sources.A collaborative optimization model of power system operation that aims at the lowest peak shaving cost and satisfies the constraints of operation,safety,and environmental protection was proposed.Finally,a certain area of Gansu Province was used as an example to perform detailed analysis and calculation,which demonstrated that the model has an optimal effect.This model can provide an analysis method for regional renewable energy development layout configurations and system optimization operations.展开更多
Manufacturing service composition of the supply side and scheduling of the demand side are two important components of Cloud Manufacturing,which directly affect the quality of Cloud Manufacturing services.However,the ...Manufacturing service composition of the supply side and scheduling of the demand side are two important components of Cloud Manufacturing,which directly affect the quality of Cloud Manufacturing services.However,the previous studies on the two components are carried out independently and thus ignoring the internal relations and mutual constraints.Considering the two components on both sides of the supply and the demand of Cloud Manufacturing services at the same time,a Bilateral Collaborative Optimization Model of Cloud Manufacturing(BCOM-CMfg)is constructed in this paper.In BCOM-CMfg,to solve the manufacturing service scheduling problem on the supply side,a new efficient manufacturing service scheduling strategy is proposed.Then,as the input of the service composition problem on the demand side,the scheduling strategy is used to build the BCOM-CMfg.Furthermore,the Cooperation Level(CPL)between services is added as an evaluation index in BCOM-CMfg,which reveals the importance of the relationship between services.To improve the quality of manufacturing services more comprehensively.Finally,a Self-adaptive Multi-objective Pigeon-inspired Optimization algorithm(S-MOPIO)is proposed to solve the BCOM-CMfg.Simulation results show that the BCOM-CMfg model has advantages in reliability and cost and S-MOPIO can solve BCOM-CMfg effectively.展开更多
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic...Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional ...Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional collaborative filtering algorithms, this paper is going to come up with improvements and construct a hybrid collaborative filtering algorithm model which will possess excellent scalability. Meanwhile, this paper will also optimize the process based on the parameter selection of genetic algorithm and demonstrate its pseudocode reference so as to provide new ideas and methods for the study of parameter combination optimization in hybrid collaborative filtering algorithm.展开更多
The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustab...The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid;main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated in IEEE 33 node system;the results show it’s effective.展开更多
Considering the interaction between the berth and the yard,this paper studies the collaborative optimization problem of berth allocation and yard storage from the point of the ships over a certain planning period.This...Considering the interaction between the berth and the yard,this paper studies the collaborative optimization problem of berth allocation and yard storage from the point of the ships over a certain planning period.This collaborative optimization problem is formulated as the integer programming,which aims at minimizing the total truck travel distance.And decision variables are the berthing positions for visiting ships and the storage positions for export containers.Meanwhile,this paper demonstrates the complexity of the problem in theory.And the hybrid tabu genetic algorithm is designed to solve the problem to obtain the optimal berth allocation position and export container storage position.For this algorithm,the rule is applied to generate the initial feasible solutions,and the crossover and mutation operation are simultaneously applied to optimize the initial solutions.Finally,this paper discusses two different scenes:the same berth scene and the same ship scene.The influence of two different scenes on truck travel distance is analyzed by different numerical examples.Numerical examples’results show that the collaborative optimization of berth allocation and yard storage can effectively shorten the truck travel distance and improve the efficiency of terminal operation,which provides the decision support for terminal operators.展开更多
A torpedo multidisciplinary design optimization (MDO) based on the collaborative optimization is proposed. Through decomposition and coordination, some problems in torpedo design such as multidisciplinary coupling, la...A torpedo multidisciplinary design optimization (MDO) based on the collaborative optimization is proposed. Through decomposition and coordination, some problems in torpedo design such as multidisciplinary coupling, large data volume and complex data relationships can be solved. Taking aim at some complex problems in the torpedo design, such as computation in multidisciplinary design, organization, modeling and information exchange, the collaborative optimization methods based on approximate technology are presented. An example to increase the torpedo range is also given. It demonstrates that the method can converge quickly, has higher reliability and smaller data throughput, and is a very effective MDO method.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China under Grant 62001220+3 种基金the Jiangsu Provincial Key Research and Development Program under Grants BE2022068the Natural Science Foundation of Jiangsu Province under Grants BK20200440the Future Network Scientific Research Fund Project FNSRFP-2021-YB-03the Young Elite Scientist Sponsorship Program,China Association for Science and Technology.
文摘Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.
基金Knowledge-based Ship-design Hyper-integrated Platform(KSHIP) of Ministry of Education and Ministry of Finance,P. R. China(No.200512)
文摘The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels' objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.
基金Sponsored by the National Natural Science Foundation of China(51708004)Beijing Youth Teaching Master Team Construction Project(108051360023XN261)Yuyou Talent Training Program of North China University of Technology(215051360020XN160/009).
文摘4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金The 2020 Guangxi Higher Education Undergraduate Teaching Reform Project“Research and Practice of Blended Course Evaluation System Based on College Students’Learning Effect”(Project number:2020JGZ116)。
文摘Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that aligns with the evolving needs of education and teaching in the new era.This paper aims to provide a comprehensive overview of the research status surrounding blended teaching,encompassing fundamental issues,teaching design,practical guidance,teaching effectiveness,and evaluation.By critically examining the current challenges associated with blended teaching,this study proposes optimization strategies including enhancing student participation and interaction,promoting deep learning,improving teachers’preparedness,teaching technologies,and curriculum design capabilities,strengthening top-level design,and perfecting evaluation and incentive mechanisms.These strategies provide new directions for the reform of blended teaching.
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金Jiangsu Provincial Philosophy and Social Science Research on Ideology and Politics Special Topic“Research on the Application of‘Micro Ideological and Political Education’in Ideological and Political Education of Colleges and Universities under the Ecology of All Media”(2019SJB674)2022 Special Project of Jiangsu Higher Education Society’s Counselor Work Research Committee“Research on the Integration of the Great Founding Spirit of the Party into the Values Education of College Students in the New Era”(22FYHLX063)。
文摘The model of“micro ideological and political education”is adapted to the characteristics of the new era and the real needs of ideological and political education in colleges and universities.Based on the work of“micro ideological and political education”in colleges and universities under the development of all-media integration,this study summarizes the main practices,achievements,and problems of“micro ideological and political education”in colleges and universities,and proposes to optimize and improve the work of“micro ideological and political education”from the perspectives of platform construction,work creation,team building,and guarantee mechanism.Optimization and enhancement are needed to effectively improve the relevance and effectiveness of“micro ideological and political education”work.
基金supported in part by the Research Grants Council of the Hong Kong Special Administrative Region of China(11202318,11203721)the Australian Research Council(DP200100700)。
文摘This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.
基金Supported by National Natural Science Foundation of China(Grant No.51575325)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2013EEM007)
文摘Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.
基金the National Natural Science Foundation of China(No.71273088).
文摘China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of new energies is the limited flexibility of regulations on power system resources,resulting in insufficient consumption capacity.Thus,the flexible resource costs for peak shaving as well as the reasonable coordinated development and operation optimization of regional renewable energy need to be considered.In this study,a renewable energy development layout configuration analysis method was established by considering the composite cost of a power system,comprehensively analyzing the potential of various flexibility regulation resources for the power system and its composite peak shaving cost,and combining renewable energy output characteristics,load forecasting,grid development,and other factors.For the optimization of various flexible resource utilization methods,a peak shaving cost estimation method from the perspective of the entire power system was established by combining the on-grid electricity prices and operating costs of different power sources.A collaborative optimization model of power system operation that aims at the lowest peak shaving cost and satisfies the constraints of operation,safety,and environmental protection was proposed.Finally,a certain area of Gansu Province was used as an example to perform detailed analysis and calculation,which demonstrated that the model has an optimal effect.This model can provide an analysis method for regional renewable energy development layout configurations and system optimization operations.
基金This paper was supported in part by Natural Science Foundation of Jiangsu Province of China under Grant BK20191381in part by Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 2019K223+2 种基金in part by the National Natural Science Foundation of China under Grant 61802208,Grant 61772286,Grant 61771258,and Grant 61701252in part by Project funded by China Postdoctoral Science Foundation Grant 2019M651923in part by Primary Research&Development Plan of Jiangsu Province under Grant BE2019742,and in part by NUPTSF under Grant NY220060,NY218035.
文摘Manufacturing service composition of the supply side and scheduling of the demand side are two important components of Cloud Manufacturing,which directly affect the quality of Cloud Manufacturing services.However,the previous studies on the two components are carried out independently and thus ignoring the internal relations and mutual constraints.Considering the two components on both sides of the supply and the demand of Cloud Manufacturing services at the same time,a Bilateral Collaborative Optimization Model of Cloud Manufacturing(BCOM-CMfg)is constructed in this paper.In BCOM-CMfg,to solve the manufacturing service scheduling problem on the supply side,a new efficient manufacturing service scheduling strategy is proposed.Then,as the input of the service composition problem on the demand side,the scheduling strategy is used to build the BCOM-CMfg.Furthermore,the Cooperation Level(CPL)between services is added as an evaluation index in BCOM-CMfg,which reveals the importance of the relationship between services.To improve the quality of manufacturing services more comprehensively.Finally,a Self-adaptive Multi-objective Pigeon-inspired Optimization algorithm(S-MOPIO)is proposed to solve the BCOM-CMfg.Simulation results show that the BCOM-CMfg model has advantages in reliability and cost and S-MOPIO can solve BCOM-CMfg effectively.
基金supported by the National Key Research and Development Program Projects of China(No.2018YFC1504705)the National Natural Science Foundation of China(No.61731015)+1 种基金the Major instrument special project of National Natural Science Foundation of China(No.42027806)the Key Research and Development Program of Shaanxi(No.2022GY-331)。
文摘Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
文摘Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional collaborative filtering algorithms, this paper is going to come up with improvements and construct a hybrid collaborative filtering algorithm model which will possess excellent scalability. Meanwhile, this paper will also optimize the process based on the parameter selection of genetic algorithm and demonstrate its pseudocode reference so as to provide new ideas and methods for the study of parameter combination optimization in hybrid collaborative filtering algorithm.
文摘The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid;main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated in IEEE 33 node system;the results show it’s effective.
文摘Considering the interaction between the berth and the yard,this paper studies the collaborative optimization problem of berth allocation and yard storage from the point of the ships over a certain planning period.This collaborative optimization problem is formulated as the integer programming,which aims at minimizing the total truck travel distance.And decision variables are the berthing positions for visiting ships and the storage positions for export containers.Meanwhile,this paper demonstrates the complexity of the problem in theory.And the hybrid tabu genetic algorithm is designed to solve the problem to obtain the optimal berth allocation position and export container storage position.For this algorithm,the rule is applied to generate the initial feasible solutions,and the crossover and mutation operation are simultaneously applied to optimize the initial solutions.Finally,this paper discusses two different scenes:the same berth scene and the same ship scene.The influence of two different scenes on truck travel distance is analyzed by different numerical examples.Numerical examples’results show that the collaborative optimization of berth allocation and yard storage can effectively shorten the truck travel distance and improve the efficiency of terminal operation,which provides the decision support for terminal operators.
文摘A torpedo multidisciplinary design optimization (MDO) based on the collaborative optimization is proposed. Through decomposition and coordination, some problems in torpedo design such as multidisciplinary coupling, large data volume and complex data relationships can be solved. Taking aim at some complex problems in the torpedo design, such as computation in multidisciplinary design, organization, modeling and information exchange, the collaborative optimization methods based on approximate technology are presented. An example to increase the torpedo range is also given. It demonstrates that the method can converge quickly, has higher reliability and smaller data throughput, and is a very effective MDO method.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.